Prediction of weaning failure using time-frequency analysis of electrocardiographic and respiration flow signals

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hernando González Acevedo , José Luis Rodríguez-Sotelo , Carlos Arizmendi , Beatriz F. Giraldo
{"title":"Prediction of weaning failure using time-frequency analysis of electrocardiographic and respiration flow signals","authors":"Hernando González Acevedo ,&nbsp;José Luis Rodríguez-Sotelo ,&nbsp;Carlos Arizmendi ,&nbsp;Beatriz F. Giraldo","doi":"10.1016/j.bspc.2025.107872","DOIUrl":null,"url":null,"abstract":"<div><div>Acute respiratory distress syndrome often necessitates prolonged periods of mechanical ventilation for patient management. Therefore, it is crucial to make appropriate decisions regarding extubation to prevent potential harm to patients and avoid the associated risks of reintubation and extubation cycles. One atypical form of acute respiratory distress syndrome is associated with COVID-19, impacting patients admitted to the intensive care unit. This study presents the design of two classifiers: the first employs machine learning techniques, while the second utilizes a convolutional neural network. Their purpose is to assess whether a patient can safely be disconnected from a mechanical ventilator following a spontaneous breathing test. The machine learning algorithm uses descriptors derived from the variability of time-frequency representations computed with the non-uniform fast Fourier transform. These representations are applied to time series data, which consist of markers extracted from the electrocardiographic and respiratory flow signals sourced from the Weandb database. The input image for the convolutional neural network is formed by combining the spectrum of the RR signal and the spectrum of two parameters recorded from the respiratory flow signal, calculated using non-uniform fast Fourier transform. Three pre-trained network architectures are analyzed: Googlenet, Alexnet and Resnet-18. The best model is obtained with a CNN with the Resnet-18 architecture, presenting an accuracy of 90.1 ± 4.3%.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"108 ","pages":"Article 107872"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425003830","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute respiratory distress syndrome often necessitates prolonged periods of mechanical ventilation for patient management. Therefore, it is crucial to make appropriate decisions regarding extubation to prevent potential harm to patients and avoid the associated risks of reintubation and extubation cycles. One atypical form of acute respiratory distress syndrome is associated with COVID-19, impacting patients admitted to the intensive care unit. This study presents the design of two classifiers: the first employs machine learning techniques, while the second utilizes a convolutional neural network. Their purpose is to assess whether a patient can safely be disconnected from a mechanical ventilator following a spontaneous breathing test. The machine learning algorithm uses descriptors derived from the variability of time-frequency representations computed with the non-uniform fast Fourier transform. These representations are applied to time series data, which consist of markers extracted from the electrocardiographic and respiratory flow signals sourced from the Weandb database. The input image for the convolutional neural network is formed by combining the spectrum of the RR signal and the spectrum of two parameters recorded from the respiratory flow signal, calculated using non-uniform fast Fourier transform. Three pre-trained network architectures are analyzed: Googlenet, Alexnet and Resnet-18. The best model is obtained with a CNN with the Resnet-18 architecture, presenting an accuracy of 90.1 ± 4.3%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信