Mohamad Abdallah , Stephanie Greige , Christina F. Webster , Moustapha Harb , Haluk Beyenal , Mahmoud Wazne
{"title":"Enhancement of the start-up and performance of an upflow anaerobic sludge blanket (UASB) reactor using electrochemically-enriched biofilm","authors":"Mohamad Abdallah , Stephanie Greige , Christina F. Webster , Moustapha Harb , Haluk Beyenal , Mahmoud Wazne","doi":"10.1016/j.enzmictec.2025.110651","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach was developed to accelerate the start-up of a 20-L UASB reactor under mesophilic conditions. Two runs were conducted, where the first run (Run I) was inoculated with anaerobic sludge, and the second run (Run II) was inoculated with the same sludge supplemented with enriched electro-active biofilms collected from the working and counter electrodes of anodic and cathodic bio-electrochemical systems (BESs). Reactors’ performance and microbial dynamics were monitored over 41 days. Methane production in Run II exceeded 200 mL-CH<sub>4</sub>/g-COD within 10 days, compared to 29 days in Run I. Run II achieved 80 % removal of soluble COD after 13 days as compared to 23 days in Run I. Sludge washout in Run II stabilized after 3 days, achieving 70 % VSS removal, whereas Run I required 17 days. Greater extracellular polymeric substance (EPS) values and higher protein-to-polysaccharide ratios in Run II may indicate accelerated granules formation mediated by EPS. 16S rRNA gene sequencing analysis results revealed shared genera between both runs but different relative abundances. <em>Methanothrix</em> dominated in Run I, while other archaeal genera, mainly <em>Methanosarcina</em> and <em>Methanobacterium</em> increased in abundance in the Run II. The <em>Enterobacteriaceae</em> family was prevalent in both reactors, with three genera, <em>Citrobacter</em>, <em>Klebsiella</em>, and <em>Enterobacter</em> distinctly dominating at different time points, suggesting potential links with the initial seed sludge or enriched biofilm consortia. The addition of electrochemically grown biofilm in Run II likely enhanced the microbial diversity, contributed to the rapid development of granular syntrophic communities, and improved reactor performance.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"188 ","pages":"Article 110651"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000717","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach was developed to accelerate the start-up of a 20-L UASB reactor under mesophilic conditions. Two runs were conducted, where the first run (Run I) was inoculated with anaerobic sludge, and the second run (Run II) was inoculated with the same sludge supplemented with enriched electro-active biofilms collected from the working and counter electrodes of anodic and cathodic bio-electrochemical systems (BESs). Reactors’ performance and microbial dynamics were monitored over 41 days. Methane production in Run II exceeded 200 mL-CH4/g-COD within 10 days, compared to 29 days in Run I. Run II achieved 80 % removal of soluble COD after 13 days as compared to 23 days in Run I. Sludge washout in Run II stabilized after 3 days, achieving 70 % VSS removal, whereas Run I required 17 days. Greater extracellular polymeric substance (EPS) values and higher protein-to-polysaccharide ratios in Run II may indicate accelerated granules formation mediated by EPS. 16S rRNA gene sequencing analysis results revealed shared genera between both runs but different relative abundances. Methanothrix dominated in Run I, while other archaeal genera, mainly Methanosarcina and Methanobacterium increased in abundance in the Run II. The Enterobacteriaceae family was prevalent in both reactors, with three genera, Citrobacter, Klebsiella, and Enterobacter distinctly dominating at different time points, suggesting potential links with the initial seed sludge or enriched biofilm consortia. The addition of electrochemically grown biofilm in Run II likely enhanced the microbial diversity, contributed to the rapid development of granular syntrophic communities, and improved reactor performance.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.