Next-Generation Sequencing: a powerful multi-purpose tool in cell line development for biologics production

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Luigi Grassi, Claire Harris, Jie Zhu, Diane Hatton, Sarah Dunn
{"title":"Next-Generation Sequencing: a powerful multi-purpose tool in cell line development for biologics production","authors":"Luigi Grassi,&nbsp;Claire Harris,&nbsp;Jie Zhu,&nbsp;Diane Hatton,&nbsp;Sarah Dunn","doi":"10.1016/j.csbj.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025001278","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.
下一代测序:一个强大的多用途的工具,在细胞系开发的生物制剂生产
在生物制药行业,细胞系发育(CLD)过程产生用于表达治疗蛋白的重组哺乳动物细胞系。广泛表征蛋白质产品的分析方法已经建立;然而,近年来,下一代测序(NGS)技术已迅速成为CLD工作流程中不可或缺的一部分。NGS可用于不同的应用,以表征细胞系的基因组、表观基因组和转录组。由此产生的广泛的数据集,特别是当与系统生物学模型集成时,可以提供全面的见解,可以应用于优化细胞系,培养基和发酵过程。NGS还提供了监测CLD期间遗传变异的综合方法。高覆盖率的NGS实验确实可以用来保证质粒的完整性,鉴定整合位点,验证细胞系的单克隆性。本文综述了NGS在促进生物制药生产以确保治疗性蛋白的安全性和有效性方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信