The phosphomimetic Rab10 T73D mutation in mice leads to postnatal lethality and aberrations in neuronal development

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
DaoBin Han , Jing Zhang , Yuan Zheng , LuWen Wang , Hui Yu , Bo Su
{"title":"The phosphomimetic Rab10 T73D mutation in mice leads to postnatal lethality and aberrations in neuronal development","authors":"DaoBin Han ,&nbsp;Jing Zhang ,&nbsp;Yuan Zheng ,&nbsp;LuWen Wang ,&nbsp;Hui Yu ,&nbsp;Bo Su","doi":"10.1016/j.bbadis.2025.167830","DOIUrl":null,"url":null,"abstract":"<div><div>The phosphorylation of the evolutionarily conserved Thr73 residue of Rab10 has been implicated in various neurodegenerative diseases. However, its impact on neuronal physiological function remains poorly understood. In this study, we generated a novel mouse model constitutively expressing the phosphomimetic Rab10 T73D to investigate its effects. Our findings revealed that homozygous Rab10 T73D mutant mice were postnatally lethal and exhibited brain developmental defects characterized by cortical thinning and shortened neuronal processes. Further investigation demonstrated that cultured hippocampal neurons with homozygous T73D mutation displayed decreased axon development, with reduced accumulation of Rab10 at the tips of neuronal processes and increased Rab10 localization at lysosomes. Mechanistically, the T73D mutation induces a constitutively GTP-bound state and while substantially weakening interaction with GDI1, GDI2 and JIP1. These molecular alterations collectively lead to altered T73D Rab10-positive vesicle trafficking dynamics, manifesting as decreased anterograde transport and increased movement velocity. Notably, comparative localization studies in RPE cells confirmed fundamental discrepancies between T73D distribution patterns and authentic phosphorylated Rab10 dynamics, validating limitations of this phosphomimetic approach. Collectively, our study elucidates the potential physiological roles of phosphorylated Rab10 in the regulation of neuronal process outgrowth and underscores its significance in the neural system. Additionally, it highlights the limitations of the T73D mutant in fully mimicking Rab10 phosphorylation.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167830"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001759","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The phosphorylation of the evolutionarily conserved Thr73 residue of Rab10 has been implicated in various neurodegenerative diseases. However, its impact on neuronal physiological function remains poorly understood. In this study, we generated a novel mouse model constitutively expressing the phosphomimetic Rab10 T73D to investigate its effects. Our findings revealed that homozygous Rab10 T73D mutant mice were postnatally lethal and exhibited brain developmental defects characterized by cortical thinning and shortened neuronal processes. Further investigation demonstrated that cultured hippocampal neurons with homozygous T73D mutation displayed decreased axon development, with reduced accumulation of Rab10 at the tips of neuronal processes and increased Rab10 localization at lysosomes. Mechanistically, the T73D mutation induces a constitutively GTP-bound state and while substantially weakening interaction with GDI1, GDI2 and JIP1. These molecular alterations collectively lead to altered T73D Rab10-positive vesicle trafficking dynamics, manifesting as decreased anterograde transport and increased movement velocity. Notably, comparative localization studies in RPE cells confirmed fundamental discrepancies between T73D distribution patterns and authentic phosphorylated Rab10 dynamics, validating limitations of this phosphomimetic approach. Collectively, our study elucidates the potential physiological roles of phosphorylated Rab10 in the regulation of neuronal process outgrowth and underscores its significance in the neural system. Additionally, it highlights the limitations of the T73D mutant in fully mimicking Rab10 phosphorylation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信