Mathematical Modelling and Analysis of Lassa fever Dynamics with Environmental Transmission and Reinfection

T.O. Oluyo , S.O. Olanrewaju , V.O. Akinsola , M.O. Adeyemi , J.K. Oladejo , O.A. Odebiyi , O.A. Adepoju , A.J. Taiwo
{"title":"Mathematical Modelling and Analysis of Lassa fever Dynamics with Environmental Transmission and Reinfection","authors":"T.O. Oluyo ,&nbsp;S.O. Olanrewaju ,&nbsp;V.O. Akinsola ,&nbsp;M.O. Adeyemi ,&nbsp;J.K. Oladejo ,&nbsp;O.A. Odebiyi ,&nbsp;O.A. Adepoju ,&nbsp;A.J. Taiwo","doi":"10.1016/j.fraope.2025.100254","DOIUrl":null,"url":null,"abstract":"<div><div>A deterministic model with a variable human population, rodent population, and Lassa virus in the environment is presented and rigorously analyzed.</div><div>The model analysis showed a process known as backward bifurcation where the Lassa fever-free equilibrium (Disease-free) coexists with Lassa fever present (Endemic equilibrium point) when the threshold parameter <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> is below one. The existence resulted from humans who had earlier recovered from Lassa fever being infected again with the Lassa virus when exposed continuously to the virus through environmental sources, close contact with infected individuals, and infected rodents. This result means, that having the threshold parameter <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> below one does not guarantee total eradication of the menace.</div><div>Further investigation showed that backward bifurcation could be eliminated in the absence of reinfection. As a result, the global stability of the disease-free equilibrium is guaranteed when the threshold parameter <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> is below unity.</div><div>Moreover, using a quadratic Lyapunov function, it is discovered that the unique endemic equilibrium is globally asymptotically stable.</div><div>Numerical analysis revealed the impacts of reinfection and other important parameters on the transmission of the disease. The analysis not only gave a thorough knowledge of the transmission but also justified the analytical results.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100254"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A deterministic model with a variable human population, rodent population, and Lassa virus in the environment is presented and rigorously analyzed.
The model analysis showed a process known as backward bifurcation where the Lassa fever-free equilibrium (Disease-free) coexists with Lassa fever present (Endemic equilibrium point) when the threshold parameter Rc is below one. The existence resulted from humans who had earlier recovered from Lassa fever being infected again with the Lassa virus when exposed continuously to the virus through environmental sources, close contact with infected individuals, and infected rodents. This result means, that having the threshold parameter Rc below one does not guarantee total eradication of the menace.
Further investigation showed that backward bifurcation could be eliminated in the absence of reinfection. As a result, the global stability of the disease-free equilibrium is guaranteed when the threshold parameter Rc is below unity.
Moreover, using a quadratic Lyapunov function, it is discovered that the unique endemic equilibrium is globally asymptotically stable.
Numerical analysis revealed the impacts of reinfection and other important parameters on the transmission of the disease. The analysis not only gave a thorough knowledge of the transmission but also justified the analytical results.
拉沙热环境传播与再感染动力学的数学建模与分析
提出了一个环境中具有可变人口、啮齿动物和拉沙病毒的确定性模型,并对其进行了严格分析。模型分析显示,当阈值参数Rc小于1时,无拉沙热平衡(无病)与存在拉沙热(地方病平衡点)共存,出现后向分岔过程。这是由于早先从拉沙热中康复的人在通过环境来源、与受感染个体和受感染啮齿动物密切接触持续暴露于病毒后再次感染拉沙病毒造成的。这一结果意味着,阈值参数Rc低于1并不能保证完全消除威胁。进一步的研究表明,在没有再感染的情况下,可以消除后分叉。因此,当阈值Rc小于1时,无病平衡的全局稳定性得到了保证。此外,利用二次Lyapunov函数,发现了唯一的地方性平衡是全局渐近稳定的。数值分析揭示了再感染和其他重要参数对疾病传播的影响。分析不仅提供了对传播的全面了解,而且证明了分析结果的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信