Usman Saeed , A. Islam , Bassem F. Felemban , Hafiz Tauqeer Ali , S. Nazir
{"title":"Electronic and magnetic phase transitions, optimized MAE/ TC, and high thermoelectric response in Y2NiIrO6: Strain effects","authors":"Usman Saeed , A. Islam , Bassem F. Felemban , Hafiz Tauqeer Ali , S. Nazir","doi":"10.1016/j.commatsci.2025.113880","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the biaxial ([110]) strain consequences on the distinct features of the pristine (prist.) Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>NiIrO<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> motif using <em>ab</em>-<em>initio</em> calculations. The anomalous <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi><mo>.</mo></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> state of Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span>, leads the system into a Mott-insulating (MI) state attaining an energy gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) of 0.21 eV with a ferrimagnetic (FiM) phase, which is ultimately caused by anti-ferromagnetic (AFM) coupling between the half-filled Ni<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> and partially-filled Ir<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup><mn>5</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> orbitals, via oxygen 2<span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> states. Remarkably, lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) is computed utilizing the Slack model, which significantly lowers the figure of merit (ZT) from 0.75 (excluding <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) to 0.34 (including <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) at 300 K. Interestingly, a reasonable ZT of 0.58 is achieved above room temperature (500 K). Moreover, the computed partial spin moments (<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) for the Ni<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup></math></span> and Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span> ions holding high spin and low spin states of S <span><math><mrow><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> are + 1.67 and <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>53</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span>, respectively. The easy magnetic axis is determined to be the <span><math><mi>b</mi></math></span>-axis, which produces a significant magnetic anisotropy energy (MAE) constant of <span><math><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> erg/cm<sup>3</sup> keeping a Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) of 198 K. Strikingly, the system demonstrated magnetic transitions from FiM to FM and FiM to AFM at the critical + 5% and + 4% tensile strains within the GGA<span><math><mrow><mo>+</mo><mi>U</mi></mrow></math></span> and GGA<span><math><mrow><mo>+</mo><mi>U</mi><mo>+</mo></mrow></math></span>SOC methods, respectively. Likewise, a Mott-insulator-to-half-metal transition is obtained at a crucial compressive strain of <span><math><mo>−</mo></math></span>6% with a robust FiM state. Moreover, our results revealed that compressive strain enhances the structural distortions, which substantially improved the MAE and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> values up to 28.9 meV and 265 K, respectively, indicating the system to be the best candidate for magnetic memory devices as well as for thermoelectric applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113880"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562500223X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the biaxial ([110]) strain consequences on the distinct features of the pristine (prist.) YNiIrO motif using ab-initio calculations. The anomalous state of Ir, leads the system into a Mott-insulating (MI) state attaining an energy gap () of 0.21 eV with a ferrimagnetic (FiM) phase, which is ultimately caused by anti-ferromagnetic (AFM) coupling between the half-filled Ni and partially-filled Ir orbitals, via oxygen 2 states. Remarkably, lattice thermal conductivity () is computed utilizing the Slack model, which significantly lowers the figure of merit (ZT) from 0.75 (excluding ) to 0.34 (including ) at 300 K. Interestingly, a reasonable ZT of 0.58 is achieved above room temperature (500 K). Moreover, the computed partial spin moments () for the Ni and Ir ions holding high spin and low spin states of S and are + 1.67 and , respectively. The easy magnetic axis is determined to be the -axis, which produces a significant magnetic anisotropy energy (MAE) constant of erg/cm3 keeping a Curie temperature () of 198 K. Strikingly, the system demonstrated magnetic transitions from FiM to FM and FiM to AFM at the critical + 5% and + 4% tensile strains within the GGA and GGASOC methods, respectively. Likewise, a Mott-insulator-to-half-metal transition is obtained at a crucial compressive strain of 6% with a robust FiM state. Moreover, our results revealed that compressive strain enhances the structural distortions, which substantially improved the MAE and values up to 28.9 meV and 265 K, respectively, indicating the system to be the best candidate for magnetic memory devices as well as for thermoelectric applications.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.