Harmonizing ground and UAV hyperspectral data: A novel spectral correction method for maximizing estimation models and datasets of ground hyperspectral

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Zhonglin Wang , Pengxin Deng , Kairui Chen , Ying Xiong , Feng Yang , Cheng Wang , Zhixin Li , Biao Li , Yongjian Sun , Zongkui Chen , Zhiyuan Yang , Jun Ma
{"title":"Harmonizing ground and UAV hyperspectral data: A novel spectral correction method for maximizing estimation models and datasets of ground hyperspectral","authors":"Zhonglin Wang ,&nbsp;Pengxin Deng ,&nbsp;Kairui Chen ,&nbsp;Ying Xiong ,&nbsp;Feng Yang ,&nbsp;Cheng Wang ,&nbsp;Zhixin Li ,&nbsp;Biao Li ,&nbsp;Yongjian Sun ,&nbsp;Zongkui Chen ,&nbsp;Zhiyuan Yang ,&nbsp;Jun Ma","doi":"10.1016/j.atech.2025.100908","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate and effective monitoring of rice nitrogen status using hyperspectral datasets and estimation models is important for precision agriculture and intelligent breeding. Ground-based non-imaging hyperspectral datasets have provided high-throughput solutions, but developed nitrogen estimation models through it and accumulated hyperspectral datasets are difficult to generalize for practical production applications. Hyperspectral imaging technique from unmanned aerial vehicles (UAV) offers opportunities for real-time and large-area monitoring of rice nitrogen status, but their datasets and developed estimation models are not as rich compared to non-imaging hyperspectral. However, we found that non-imaging hyperspectral datasets and estimation models are difficult to adapt to hyperspectral images. Thus, this study aims to harmonize non-imaging hyperspectral databases and nitrogen estimation models to accommodate UAV hyperspectral images. We proposed a spectral correction method for harmonizing non-imaging hyperspectral and hyperspectral image data. Estimation models of canopy nitrogen content (CNC) were developed using machine learning algorithms with non-imaging hyperspectral, hyperspectral images, and corrected hyperspectral datasets. Importantly, the applicability and effectiveness of the CNC estimation models and the dataset of corrected hyperspectral were explored for hyperspectral images. The results showed that the corrected hyperspectral provided a modeling accuracy comparable to that of the non-imaging hyperspectral and hyperspectral images when estimating the CNC. The applicability of the corrected hyperspectral estimation models is superior to non-imaging hyperspectral when applied to hyperspectral images. Similarly, the corrected hyperspectral dataset outperformed the non-imaging hyperspectral dataset in estimating nitrogen content from the estimation models of hyperspectral images. To conclude, corrected hyperspectral estimation models and datasets can be effectively transferred to hyperspectral images to estimate CNC and address the problem of heterogeneity between non-imaging and hyperspectral images. This study provides a new approach to maximize the use of estimation models and databases developed by non-imaging hyperspectral in precision agriculture.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100908"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate and effective monitoring of rice nitrogen status using hyperspectral datasets and estimation models is important for precision agriculture and intelligent breeding. Ground-based non-imaging hyperspectral datasets have provided high-throughput solutions, but developed nitrogen estimation models through it and accumulated hyperspectral datasets are difficult to generalize for practical production applications. Hyperspectral imaging technique from unmanned aerial vehicles (UAV) offers opportunities for real-time and large-area monitoring of rice nitrogen status, but their datasets and developed estimation models are not as rich compared to non-imaging hyperspectral. However, we found that non-imaging hyperspectral datasets and estimation models are difficult to adapt to hyperspectral images. Thus, this study aims to harmonize non-imaging hyperspectral databases and nitrogen estimation models to accommodate UAV hyperspectral images. We proposed a spectral correction method for harmonizing non-imaging hyperspectral and hyperspectral image data. Estimation models of canopy nitrogen content (CNC) were developed using machine learning algorithms with non-imaging hyperspectral, hyperspectral images, and corrected hyperspectral datasets. Importantly, the applicability and effectiveness of the CNC estimation models and the dataset of corrected hyperspectral were explored for hyperspectral images. The results showed that the corrected hyperspectral provided a modeling accuracy comparable to that of the non-imaging hyperspectral and hyperspectral images when estimating the CNC. The applicability of the corrected hyperspectral estimation models is superior to non-imaging hyperspectral when applied to hyperspectral images. Similarly, the corrected hyperspectral dataset outperformed the non-imaging hyperspectral dataset in estimating nitrogen content from the estimation models of hyperspectral images. To conclude, corrected hyperspectral estimation models and datasets can be effectively transferred to hyperspectral images to estimate CNC and address the problem of heterogeneity between non-imaging and hyperspectral images. This study provides a new approach to maximize the use of estimation models and databases developed by non-imaging hyperspectral in precision agriculture.
协调地面和无人机高光谱数据:一种新的光谱校正方法,用于最大化地面高光谱估计模型和数据集
利用高光谱数据集和估算模型对水稻氮素状况进行准确有效的监测,对精准农业和智能育种具有重要意义。地面非成像高光谱数据集提供了高通量解决方案,但通过它建立的氮估计模型和积累的高光谱数据集难以推广到实际生产应用中。基于无人机的高光谱成像技术为水稻氮素状况的实时、大面积监测提供了机会,但与非成像高光谱相比,其数据集和开发的估算模型并不丰富。然而,我们发现非成像高光谱数据集和估计模型难以适应高光谱图像。因此,本研究旨在协调非成像高光谱数据库和氮估计模型,以适应无人机高光谱图像。提出了一种非成像高光谱和高光谱数据协调的光谱校正方法。利用非成像高光谱、高光谱图像和校正高光谱数据集,利用机器学习算法建立了冠层氮含量估算模型(CNC)。重要的是,探讨了CNC估计模型和校正高光谱数据集对高光谱图像的适用性和有效性。结果表明,校正后的高光谱在估计CNC时提供了与非成像高光谱和高光谱图像相当的建模精度。校正后的高光谱估计模型对高光谱图像的适用性优于非成像高光谱。同样,校正后的高光谱数据集在从高光谱图像估计模型估计氮含量方面优于非成像高光谱数据集。综上所述,校正后的高光谱估计模型和数据集可以有效地转移到高光谱图像中来估计CNC,并解决非成像和高光谱图像之间的异质性问题。该研究为实现非成像高光谱估算模型和数据库在精准农业中的最大利用提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信