A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease

IF 7 2区 医学 Q1 BIOLOGY
Bingqing Long , Rui Li , Ronghua Wang , Anyu Yin , Ziyi Zhuang , Yang Jing , Linning E
{"title":"A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease","authors":"Bingqing Long ,&nbsp;Rui Li ,&nbsp;Ronghua Wang ,&nbsp;Anyu Yin ,&nbsp;Ziyi Zhuang ,&nbsp;Yang Jing ,&nbsp;Linning E","doi":"10.1016/j.compbiomed.2025.110128","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD).</div></div><div><h3>Materials and methods</h3><div>The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features.</div></div><div><h3>Results</h3><div>The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951).</div></div><div><h3>Conclusion</h3><div>The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525004792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD).

Materials and methods

The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features.

Results

The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951).

Conclusion

The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信