Understanding the Role of Solvent Polarity and Amino Acid Composition of Cyclic Peptides in Nanotube Stability

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Rimjhim Moral,  and , Sandip Paul*, 
{"title":"Understanding the Role of Solvent Polarity and Amino Acid Composition of Cyclic Peptides in Nanotube Stability","authors":"Rimjhim Moral,&nbsp; and ,&nbsp;Sandip Paul*,&nbsp;","doi":"10.1021/acs.jpcb.5c0040010.1021/acs.jpcb.5c00400","DOIUrl":null,"url":null,"abstract":"<p >Cyclic peptides (CPs) possess the ability to self-assemble into cyclic peptide nanotubes (CPNTs), which find extensive applications in nanotechnology. The formation and stability of these nanotubes are influenced by multiple factors. The present study explores the stability of CPNTs in various solvents with varying polarity, focusing on three specific peptide sequences: D<u>K</u><sub>4</sub>, W<u>L</u><sub>4</sub>, and D<u>L</u>K<u>L</u><sub>2</sub>. Using molecular dynamics simulations, the effect of solvent polarity and peptide composition on the stability of CPNTs is assessed through the determination of electrostatic, van der Waals, and hydrogen-bonding interactions. The binding free energy between adjacent cyclic peptide rings is analyzed via MM/GBSA and MM/PBSA methods, revealing that D<u>L</u>K<u>L</u><sub>2</sub>, an amphiphilic peptide, exhibits greater stability than D<u>K</u><sub>4</sub> and W<u>L</u><sub>4</sub> in nonpolar solvents. The introduction of leucine residues in D<u>L</u>K<u>L</u><sub>2</sub> reduces intramolecular hydrogen bonding and electrostatic interactions, promoting stronger interpeptide backbone hydrogen bonds and maintaining the nanotube’s structural integrity. Hydrogen bond lifetimes, computed using the corresponding time correlation function, indicate the longest-lasting hydrogen bonds occur in all the solvent environments except water, further contributing to the stability of D<u>L</u>K<u>L</u><sub>2</sub> nanotubes. Additionally, deformation from circularity in the peptide rings, analyzed using ellipticity values, highlights the degree of structural distortion across solvents, with D<u>K</u><sub>4</sub> showing the highest deviation due to stronger intramolecular interactions. These findings offer valuable insights into the roles of solvent and peptide composition in the self-assembly and stability of CPNTs, which have significant implications for their potential applications in nanotechnology and biomedicine.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 14","pages":"3590–3603 3590–3603"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00400","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic peptides (CPs) possess the ability to self-assemble into cyclic peptide nanotubes (CPNTs), which find extensive applications in nanotechnology. The formation and stability of these nanotubes are influenced by multiple factors. The present study explores the stability of CPNTs in various solvents with varying polarity, focusing on three specific peptide sequences: DK4, WL4, and DLKL2. Using molecular dynamics simulations, the effect of solvent polarity and peptide composition on the stability of CPNTs is assessed through the determination of electrostatic, van der Waals, and hydrogen-bonding interactions. The binding free energy between adjacent cyclic peptide rings is analyzed via MM/GBSA and MM/PBSA methods, revealing that DLKL2, an amphiphilic peptide, exhibits greater stability than DK4 and WL4 in nonpolar solvents. The introduction of leucine residues in DLKL2 reduces intramolecular hydrogen bonding and electrostatic interactions, promoting stronger interpeptide backbone hydrogen bonds and maintaining the nanotube’s structural integrity. Hydrogen bond lifetimes, computed using the corresponding time correlation function, indicate the longest-lasting hydrogen bonds occur in all the solvent environments except water, further contributing to the stability of DLKL2 nanotubes. Additionally, deformation from circularity in the peptide rings, analyzed using ellipticity values, highlights the degree of structural distortion across solvents, with DK4 showing the highest deviation due to stronger intramolecular interactions. These findings offer valuable insights into the roles of solvent and peptide composition in the self-assembly and stability of CPNTs, which have significant implications for their potential applications in nanotechnology and biomedicine.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信