Machine Learning Lattice Parameters of M2AX Phases

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Cesare Roncaglia*, Fábio Lopes, Nick Goossens, Michael Stuer and Daniele Passerone, 
{"title":"Machine Learning Lattice Parameters of M2AX Phases","authors":"Cesare Roncaglia*,&nbsp;Fábio Lopes,&nbsp;Nick Goossens,&nbsp;Michael Stuer and Daniele Passerone,&nbsp;","doi":"10.1021/acs.jpcc.4c0873010.1021/acs.jpcc.4c08730","DOIUrl":null,"url":null,"abstract":"<p >MAX phases, with a general composition of M<sub><i>n</i>+1</sub>AX<sub><i>n</i></sub>, are layered materials with hexagonal symmetry that have increasingly captivated a lot of attention because of their unique way of combining ceramic and metallic properties into a homogeneous bulk material. We developed a machine learning approach to predict the lattice parameters a and c of M<sub>2</sub>AX phases. This approach consists of training an ensemble model on a data set collecting all experimentally synthesized M<sub>2</sub>AX phases’ lattice parameters. Our approach combines a data augmentation scheme with state-of-the-art regression models and hyperparameter optimization tools. We tested our model on newly synthesized compositionally complex high-entropy M<sub>2</sub>AX phases with positive results. Finally, we also show that our machine learning predictions of lattice parameters are useful as initial values for variable-cell relaxations of M<sub>2</sub>AX structures with the density functional theory.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 14","pages":"7052–7062 7052–7062"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c08730","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08730","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MAX phases, with a general composition of Mn+1AXn, are layered materials with hexagonal symmetry that have increasingly captivated a lot of attention because of their unique way of combining ceramic and metallic properties into a homogeneous bulk material. We developed a machine learning approach to predict the lattice parameters a and c of M2AX phases. This approach consists of training an ensemble model on a data set collecting all experimentally synthesized M2AX phases’ lattice parameters. Our approach combines a data augmentation scheme with state-of-the-art regression models and hyperparameter optimization tools. We tested our model on newly synthesized compositionally complex high-entropy M2AX phases with positive results. Finally, we also show that our machine learning predictions of lattice parameters are useful as initial values for variable-cell relaxations of M2AX structures with the density functional theory.

M2AX相的机器学习晶格参数
MAX相的一般成分为Mn+1AXn,是一种具有六边形对称性的层状材料,由于其独特的方式将陶瓷和金属性能结合成均匀的大块材料,因此越来越受到人们的关注。我们开发了一种机器学习方法来预测M2AX相的晶格参数a和c。该方法包括在收集所有实验合成的M2AX相晶格参数的数据集上训练集成模型。我们的方法将数据增强方案与最先进的回归模型和超参数优化工具相结合。我们在新合成的成分复杂的高熵M2AX相上测试了我们的模型,并取得了积极的结果。最后,我们还表明,我们的晶格参数的机器学习预测是有用的初始值为M2AX结构的变单元松弛与密度泛函理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信