Accelerating Band Gap Prediction and High-Throughput Screening of Covalent Organic Frameworks Based on Transfer Learning

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Qinglin Wei, Jiaxiang Qiu, Ruirui Wang, Zhongti Sun, Yuee Xie*, Yuanping Chen and Yangyang Wan*, 
{"title":"Accelerating Band Gap Prediction and High-Throughput Screening of Covalent Organic Frameworks Based on Transfer Learning","authors":"Qinglin Wei,&nbsp;Jiaxiang Qiu,&nbsp;Ruirui Wang,&nbsp;Zhongti Sun,&nbsp;Yuee Xie*,&nbsp;Yuanping Chen and Yangyang Wan*,&nbsp;","doi":"10.1021/acs.jpcc.5c0130710.1021/acs.jpcc.5c01307","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs) are a vast class of materials with nearly infinite structural possibilities, making it challenging to quickly identify COFs with specific properties, particularly their electronic properties. In this study, we apply transfer learning to overcome these limitations by fine-tuning a pretrained model (PMTransformer) on various COF data sets, enabling the rapid prediction of COF band gaps. Our model accurately predicts COF band gaps with a mean absolute error of 0.23 eV and <i>R</i><sup>2</sup> of 0.89, outperforming the crystal graph convolutional neural network model. We validate the model’s predictions using density functional theory (DFT) calculations on a separate COF data set, confirming the consistency of predicted and DFT-calculated band gaps. By applying the model to a large COF database, we identify promising (sim) conductive COFs, demonstrating the model’s potential as an efficient screening tool for discovering COFs with optimized electronic properties for future applications in electronics and optics.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 14","pages":"7126–7133 7126–7133"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01307","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) are a vast class of materials with nearly infinite structural possibilities, making it challenging to quickly identify COFs with specific properties, particularly their electronic properties. In this study, we apply transfer learning to overcome these limitations by fine-tuning a pretrained model (PMTransformer) on various COF data sets, enabling the rapid prediction of COF band gaps. Our model accurately predicts COF band gaps with a mean absolute error of 0.23 eV and R2 of 0.89, outperforming the crystal graph convolutional neural network model. We validate the model’s predictions using density functional theory (DFT) calculations on a separate COF data set, confirming the consistency of predicted and DFT-calculated band gaps. By applying the model to a large COF database, we identify promising (sim) conductive COFs, demonstrating the model’s potential as an efficient screening tool for discovering COFs with optimized electronic properties for future applications in electronics and optics.

Abstract Image

基于迁移学习加速共价有机框架的带隙预测和高通量筛选
共价有机框架(COFs)是一大类具有几乎无限结构可能性的材料,这使得快速识别具有特定性质的COFs具有挑战性,特别是它们的电子性质。在本研究中,我们通过在各种COF数据集上微调预训练模型(PMTransformer)来应用迁移学习来克服这些限制,从而能够快速预测COF带隙。该模型准确预测COF带隙,平均绝对误差为0.23 eV, R2为0.89,优于晶体图卷积神经网络模型。我们在一个单独的COF数据集上使用密度泛函理论(DFT)计算验证了模型的预测,证实了预测和DFT计算的带隙的一致性。通过将该模型应用于大型COF数据库,我们确定了有前途的(sim)导电COFs,证明了该模型作为发现具有优化电子性能的COFs的有效筛选工具的潜力,可用于未来在电子和光学领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信