Crystal plasticity modeling and data-driven approach for fatigue life estimation of additively manufactured Ti-6Al-4V alloy

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Kushagra Tiwari , Aayush Trivedi , G. Bharat Reddy , Bhupendra K. Kumawat , Akhil Bhardwaj , R.K. Singh Raman , Rhys Jones , Alankar Alankar
{"title":"Crystal plasticity modeling and data-driven approach for fatigue life estimation of additively manufactured Ti-6Al-4V alloy","authors":"Kushagra Tiwari ,&nbsp;Aayush Trivedi ,&nbsp;G. Bharat Reddy ,&nbsp;Bhupendra K. Kumawat ,&nbsp;Akhil Bhardwaj ,&nbsp;R.K. Singh Raman ,&nbsp;Rhys Jones ,&nbsp;Alankar Alankar","doi":"10.1016/j.ijplas.2025.104319","DOIUrl":null,"url":null,"abstract":"<div><div>The limited use of additively manufactured Ti-6Al-4V (AM Ti64) alloy in critical load–bearing applications stems from an incomplete understanding of its fatigue behavior, the underlying causes and mechanisms, and the absence of reliable predictive modeling. This study aims to bridge this gap by attempting to aid a microstructure–sensitive modeling with the number of cycles to failure. Low cycle fatigue (LCF) tests are performed to failure at room temperature with five different strain amplitudes, with cyclic softening noted in all tests. A crystal plasticity model is developed and used for analyzing the fatigue indicator parameters (FIPs). Synthetic microstructures that statistically resemble the experimentally observed microstructure obtained using Electron Backscatter Diffraction (EBSD), are used. Grain-averaged and Band-averaged Fatemi–Socie FIPs are employed to evaluate the likelihood of crack initiation. These FIPs are derived from the output of CPFE model and volume-averaged for each strain amplitude. Following the elastic–plastic shakedown, the highest 5% of volume-averaged FIPs are analyzed using a Gumbel extreme value distribution. A Bayesian inference approach is used to associate the Gumbel distribution’s characteristics of FIPs with fatigue life, demonstrating a strong correlation with the experimental data on fatigue life. This work shows that a consistent correlation between FIPs and the number of cycles to failure can be established, offering a predictive tool for fatigue life assessment.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104319"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000786","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limited use of additively manufactured Ti-6Al-4V (AM Ti64) alloy in critical load–bearing applications stems from an incomplete understanding of its fatigue behavior, the underlying causes and mechanisms, and the absence of reliable predictive modeling. This study aims to bridge this gap by attempting to aid a microstructure–sensitive modeling with the number of cycles to failure. Low cycle fatigue (LCF) tests are performed to failure at room temperature with five different strain amplitudes, with cyclic softening noted in all tests. A crystal plasticity model is developed and used for analyzing the fatigue indicator parameters (FIPs). Synthetic microstructures that statistically resemble the experimentally observed microstructure obtained using Electron Backscatter Diffraction (EBSD), are used. Grain-averaged and Band-averaged Fatemi–Socie FIPs are employed to evaluate the likelihood of crack initiation. These FIPs are derived from the output of CPFE model and volume-averaged for each strain amplitude. Following the elastic–plastic shakedown, the highest 5% of volume-averaged FIPs are analyzed using a Gumbel extreme value distribution. A Bayesian inference approach is used to associate the Gumbel distribution’s characteristics of FIPs with fatigue life, demonstrating a strong correlation with the experimental data on fatigue life. This work shows that a consistent correlation between FIPs and the number of cycles to failure can be established, offering a predictive tool for fatigue life assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信