Gangting Wang , Sangyu Luo , Yansong Guo , Ruizhe Huang , Chenguang Wang , Zhaoliang Qu
{"title":"Investigating the correlation between mechanical properties and gradient microstructures in laser shock peened CrCoNi alloy","authors":"Gangting Wang , Sangyu Luo , Yansong Guo , Ruizhe Huang , Chenguang Wang , Zhaoliang Qu","doi":"10.1016/j.ijplas.2025.104331","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, laser shock processing (LSP) was used to enhance the mechanical properties of CrCoNi medium-entropy alloys (MEAs) by introducing the gradient microstructures (GS) within the material. Extensive microstructural characterizations confirmed a progressive distribution of nanocrystalline grains, dislocations, and deformation twins along the material's depth. Quantitative measurements of microstructural parameters at varying depths were conducted. Near the surface, the predominant microstructural evolutions were high dislocation density, twins, and grain refinement. At deeper regions, the key behaviors were nanoscale grain refinement and twin collisions. Nanoindentation and micro-pillar compression tests were employed to characterize the hardness distribution and mechanical properties at the microscale. It was found that LSP significantly improved hardness and yield strength. A quantitative relationship between GS and mechanical properties was developed, with theoretical calculations showing good agreement with experimental results. The contributions of different microstructural evolutions to hardness were individually assessed, revealing that multi-stage twins and grain refinement were the primary strengthening factors after one and ten impacts, respectively.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104331"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000907","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, laser shock processing (LSP) was used to enhance the mechanical properties of CrCoNi medium-entropy alloys (MEAs) by introducing the gradient microstructures (GS) within the material. Extensive microstructural characterizations confirmed a progressive distribution of nanocrystalline grains, dislocations, and deformation twins along the material's depth. Quantitative measurements of microstructural parameters at varying depths were conducted. Near the surface, the predominant microstructural evolutions were high dislocation density, twins, and grain refinement. At deeper regions, the key behaviors were nanoscale grain refinement and twin collisions. Nanoindentation and micro-pillar compression tests were employed to characterize the hardness distribution and mechanical properties at the microscale. It was found that LSP significantly improved hardness and yield strength. A quantitative relationship between GS and mechanical properties was developed, with theoretical calculations showing good agreement with experimental results. The contributions of different microstructural evolutions to hardness were individually assessed, revealing that multi-stage twins and grain refinement were the primary strengthening factors after one and ten impacts, respectively.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.