Prasad Palani Velu, Roxanna E. Abhari, Neil C. Henderson
{"title":"Spatial genomics: Mapping the landscape of fibrosis","authors":"Prasad Palani Velu, Roxanna E. Abhari, Neil C. Henderson","doi":"10.1126/scitranslmed.adm6783","DOIUrl":null,"url":null,"abstract":"<div >Organ fibrosis causes major morbidity and mortality worldwide. Treatments for fibrosis are limited, with organ transplantation being the only cure. Here, we review how various state-of-the-art spatial genomics approaches are being deployed to interrogate fibrosis across multiple organs, providing exciting insights into fibrotic disease pathogenesis. These include the detailed topographical annotation of pathogenic cell populations and states, detection of transcriptomic perturbations in morphologically normal tissue, characterization of fibrotic and homeostatic niches and their cellular constituents, and in situ interrogation of ligand-receptor interactions within these microenvironments. Together, these powerful readouts enable detailed analysis of fibrosis evolution across time and space.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 793","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adm6783","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organ fibrosis causes major morbidity and mortality worldwide. Treatments for fibrosis are limited, with organ transplantation being the only cure. Here, we review how various state-of-the-art spatial genomics approaches are being deployed to interrogate fibrosis across multiple organs, providing exciting insights into fibrotic disease pathogenesis. These include the detailed topographical annotation of pathogenic cell populations and states, detection of transcriptomic perturbations in morphologically normal tissue, characterization of fibrotic and homeostatic niches and their cellular constituents, and in situ interrogation of ligand-receptor interactions within these microenvironments. Together, these powerful readouts enable detailed analysis of fibrosis evolution across time and space.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.