Hamiltonian Learning via Shadow Tomography of Pseudo-Choi States

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-04-09 DOI:10.22331/q-2025-04-09-1700
Juan Castaneda, Nathan Wiebe
{"title":"Hamiltonian Learning via Shadow Tomography of Pseudo-Choi States","authors":"Juan Castaneda, Nathan Wiebe","doi":"10.22331/q-2025-04-09-1700","DOIUrl":null,"url":null,"abstract":"We introduce a new approach to learn Hamiltonians through a resource that we call the pseudo-Choi state, which encodes the Hamiltonian in a state using a procedure that is analogous to the Choi-Jamiolkowski isomorphism. We provide an efficient method for generating these pseudo-Choi states by querying a time evolution unitary of the form $e^{-iHt}$ and its inverse, and show that for a Hamiltonian with $M$ terms the Hamiltonian coefficients can be estimated via classical shadow tomography within error $\\epsilon$ in the $2$-norm using $\\widetilde{O}\\left(\\frac{M}{t^2\\epsilon^2}\\right)$ queries to the state preparation protocol, where $t \\le \\frac{1}{2\\left\\lVert H \\right\\rVert}$. We further show an alternative approach that eschews classical shadow tomography in favor of quantum mean estimation that reduces this cost (at the price of many more qubits) to $\\widetilde{O}\\left(\\frac{M}{t\\epsilon}\\right)$. Additionally, we show that in the case where one does not have access to the state preparation protocol, the Hamiltonian can be learned using $\\widetilde{O}\\left(\\frac{\\alpha^4M}{\\epsilon^2}\\right)$ copies of the pseudo-Choi state. The constant $\\alpha$ depends on the norm of the Hamiltonian, and the scaling in terms of $\\alpha$ can be improved quadratically if using pseudo-Choi states of the normalized Hamiltonian. Finally, we show that our learning process is robust to errors in the resource states and to errors in the Hamiltonian class. Specifically, we show that if the true Hamiltonian contains more terms than we believe are present in the reconstruction, then our methods give an indication that there are Hamiltonian terms that have not been identified and will still accurately estimate the known terms in the Hamiltonian.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"31 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-09-1700","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new approach to learn Hamiltonians through a resource that we call the pseudo-Choi state, which encodes the Hamiltonian in a state using a procedure that is analogous to the Choi-Jamiolkowski isomorphism. We provide an efficient method for generating these pseudo-Choi states by querying a time evolution unitary of the form $e^{-iHt}$ and its inverse, and show that for a Hamiltonian with $M$ terms the Hamiltonian coefficients can be estimated via classical shadow tomography within error $\epsilon$ in the $2$-norm using $\widetilde{O}\left(\frac{M}{t^2\epsilon^2}\right)$ queries to the state preparation protocol, where $t \le \frac{1}{2\left\lVert H \right\rVert}$. We further show an alternative approach that eschews classical shadow tomography in favor of quantum mean estimation that reduces this cost (at the price of many more qubits) to $\widetilde{O}\left(\frac{M}{t\epsilon}\right)$. Additionally, we show that in the case where one does not have access to the state preparation protocol, the Hamiltonian can be learned using $\widetilde{O}\left(\frac{\alpha^4M}{\epsilon^2}\right)$ copies of the pseudo-Choi state. The constant $\alpha$ depends on the norm of the Hamiltonian, and the scaling in terms of $\alpha$ can be improved quadratically if using pseudo-Choi states of the normalized Hamiltonian. Finally, we show that our learning process is robust to errors in the resource states and to errors in the Hamiltonian class. Specifically, we show that if the true Hamiltonian contains more terms than we believe are present in the reconstruction, then our methods give an indication that there are Hamiltonian terms that have not been identified and will still accurately estimate the known terms in the Hamiltonian.
通过伪乔伊状态的影子断层扫描进行哈密顿学习
我们引入了一种新的方法来学习哈密顿量通过一个资源,我们称之为伪崔状态,它编码哈密顿量在一个状态使用一个类似于Choi-Jamiolkowski同构的过程。我们提供了一种有效的方法,通过查询形式为$e^{-iHt}$及其逆的时间演化酉元来生成这些伪choi状态,并表明对于具有$M$项的哈密顿量,哈密顿系数可以通过使用$\widetilde{O}\left(\frac{M}{t^2\epsilon^2}\right)$查询状态准备协议,在$2$ -范数的误差$\epsilon$内通过经典阴影层扫描来估计,其中$t \le \frac{1}{2\left\lVert H \right\rVert}$。我们进一步展示了一种替代方法,该方法避开了经典的阴影断层扫描,支持量子平均估计,将该成本(以更多量子比特的代价)降低到$\widetilde{O}\left(\frac{M}{t\epsilon}\right)$。此外,我们表明,在没有访问状态准备协议的情况下,可以使用$\widetilde{O}\left(\frac{\alpha^4M}{\epsilon^2}\right)$伪choi状态的副本来学习哈密顿量。常数$\alpha$取决于哈密顿量的范数,如果使用规格化哈密顿量的伪choi状态,则可以二次改进以$\alpha$表示的缩放。最后,我们证明了我们的学习过程对资源状态和哈密顿类的误差具有鲁棒性。具体来说,我们表明,如果真正的哈密顿函数包含的项比我们认为在重构中存在的项更多,那么我们的方法给出了一个指示,即存在尚未被识别的哈密顿函数项,并且仍然可以准确地估计哈密顿函数中的已知项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信