{"title":"Deep learning-driven 3D marine nitrate estimation: uncertainty mitigation through underwater signal exploitation and label augmentation","authors":"Xiang Yu, Guodong Fan, Jinjiang Li","doi":"10.3389/fmars.2025.1576558","DOIUrl":null,"url":null,"abstract":"Nitrate is a critical limiting nutrient that significantly influences marine primary productivity and carbon sequestration. However, three-dimensional observation and reconstruction of oceanic nitrate remain constrained by the scarcity of <jats:italic>in-situ</jats:italic> data and limited spatial coverage. To address the challenge of limited observational labels hindering the development of global deep learning models for marine three-dimensional estimation, this study proposes a novel deep learning framework that utilizes underwater signals for label augmentation, thereby reducing the uncertainty in three-dimensional nitrate estimation. Initially, we employ a Bayesian neural network, utilizing multiple subsurface parameters from Biogeochemical-Argo (BGC-Argo) measurements to generate virtual nitrate labels with quantified uncertainty. These augmented labels are then assimilated into a U-Net-based model, greatly expanding the training dataset and further integrating sea surface environmental variables for comprehensive three-dimensional reconstruction. The proposed uncertainty-weighted loss function refines model training, balancing the quality and training impact of both observed and augmented labels. Quantitative evaluations using BGC-Argo and cruise measurement data demonstrate notable improvements in spatial and temporal generalization, with RMSE reductions of approximately 15% and 28%, respectively, particularly in under-sampled areas and complex upper ocean regions. This research framework offers a promising solution for oceanic three-dimensional data reconstruction in the absence of supervised data and has the potential to be coupled with various marine parameters and reconstruction models, providing deeper insights into the spatiotemporal variations of marine environments.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1576558","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrate is a critical limiting nutrient that significantly influences marine primary productivity and carbon sequestration. However, three-dimensional observation and reconstruction of oceanic nitrate remain constrained by the scarcity of in-situ data and limited spatial coverage. To address the challenge of limited observational labels hindering the development of global deep learning models for marine three-dimensional estimation, this study proposes a novel deep learning framework that utilizes underwater signals for label augmentation, thereby reducing the uncertainty in three-dimensional nitrate estimation. Initially, we employ a Bayesian neural network, utilizing multiple subsurface parameters from Biogeochemical-Argo (BGC-Argo) measurements to generate virtual nitrate labels with quantified uncertainty. These augmented labels are then assimilated into a U-Net-based model, greatly expanding the training dataset and further integrating sea surface environmental variables for comprehensive three-dimensional reconstruction. The proposed uncertainty-weighted loss function refines model training, balancing the quality and training impact of both observed and augmented labels. Quantitative evaluations using BGC-Argo and cruise measurement data demonstrate notable improvements in spatial and temporal generalization, with RMSE reductions of approximately 15% and 28%, respectively, particularly in under-sampled areas and complex upper ocean regions. This research framework offers a promising solution for oceanic three-dimensional data reconstruction in the absence of supervised data and has the potential to be coupled with various marine parameters and reconstruction models, providing deeper insights into the spatiotemporal variations of marine environments.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.