Multiparametric Ultrasound Breast Tumors Diagnosis Within BI-RADS Category 4 via Feature Disentanglement and Cross-Fusion

Zhikai Ruan;Canxu Song;Pengfei Xu;Chaoyu Wang;Jing Zhao;Meng Chen;Suoni Li;Qiang Su;Xiaozhen Zhuo;Yue Wu;Mingxi Wan;Diya Wang
{"title":"Multiparametric Ultrasound Breast Tumors Diagnosis Within BI-RADS Category 4 via Feature Disentanglement and Cross-Fusion","authors":"Zhikai Ruan;Canxu Song;Pengfei Xu;Chaoyu Wang;Jing Zhao;Meng Chen;Suoni Li;Qiang Su;Xiaozhen Zhuo;Yue Wu;Mingxi Wan;Diya Wang","doi":"10.1109/TMI.2025.3558786","DOIUrl":null,"url":null,"abstract":"BI-RADS category 4 is the diagnostic threshold between benign and malignant breast tumors and is critical in determining clinical breast cancer treatment options. However, breast tumors within BI-RADS category 4 tend to show subtle or contradictory differences between benign and malignant on B-mode images, leading to uncertainty in clinical diagnosis. Recently, many deep learning studies have realized the value of multimodal and multiparametric ultrasound in the diagnosis of breast tumors. However, due to the heterogeneity of data, how to effectively represent and fuse common and specific features from multiple sources of information is an open question, which is often overlooked by existing computer-aided diagnosis methods. To address these problems, we propose a novel framework that integrates multiparametric ultrasound information (B-mode images, Nakagami parametric images, and semantic attributes) to assist the diagnosis of BI-RADS 4 breast tumors. The framework extracts and disentangles common and specific features from B-mode and Nakagami parametric images based on a dual-branch Transformer-CNN encoder. Meanwhile, we propose a novel feature disentanglement loss to further ensure the complementarity and consistency of multiparametric features. In addition, we construct a multiparameter cross-fusion module to integrate the high-level features extracted from multiparametric images and semantic attributes. Extensive experiments on the multicenter multiparametric dataset demonstrated the superiority of the proposed framework over the state-of-the-art methods in the diagnosis for BI-RADS 4 breast tumors. The code is available at <uri>https://github.com/rzk-code/MUBTD</uri>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"3064-3075"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955401/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BI-RADS category 4 is the diagnostic threshold between benign and malignant breast tumors and is critical in determining clinical breast cancer treatment options. However, breast tumors within BI-RADS category 4 tend to show subtle or contradictory differences between benign and malignant on B-mode images, leading to uncertainty in clinical diagnosis. Recently, many deep learning studies have realized the value of multimodal and multiparametric ultrasound in the diagnosis of breast tumors. However, due to the heterogeneity of data, how to effectively represent and fuse common and specific features from multiple sources of information is an open question, which is often overlooked by existing computer-aided diagnosis methods. To address these problems, we propose a novel framework that integrates multiparametric ultrasound information (B-mode images, Nakagami parametric images, and semantic attributes) to assist the diagnosis of BI-RADS 4 breast tumors. The framework extracts and disentangles common and specific features from B-mode and Nakagami parametric images based on a dual-branch Transformer-CNN encoder. Meanwhile, we propose a novel feature disentanglement loss to further ensure the complementarity and consistency of multiparametric features. In addition, we construct a multiparameter cross-fusion module to integrate the high-level features extracted from multiparametric images and semantic attributes. Extensive experiments on the multicenter multiparametric dataset demonstrated the superiority of the proposed framework over the state-of-the-art methods in the diagnosis for BI-RADS 4 breast tumors. The code is available at https://github.com/rzk-code/MUBTD
通过特征分离和交叉融合进行 BI-RADS 第 4 类多参数超声乳腺肿瘤诊断
BI-RADS第4类是良性和恶性乳腺肿瘤的诊断阈值,对确定临床乳腺癌治疗方案至关重要。然而,BI-RADS 4类乳腺肿瘤在b片上往往表现出微妙或矛盾的良恶性差异,导致临床诊断的不确定性。近年来,许多深度学习研究已经认识到多模态、多参数超声在乳腺肿瘤诊断中的价值。然而,由于数据的异质性,如何有效地表示和融合来自多个信息来源的共同特征和特定特征是一个悬而未决的问题,这往往被现有的计算机辅助诊断方法所忽视。为了解决这些问题,我们提出了一个新的框架,该框架集成了多参数超声信息(b模式图像,Nakagami参数图像和语义属性)来辅助BI-RADS 4乳腺肿瘤的诊断。该框架基于双支路变压器- cnn编码器从b模式和Nakagami参数图像中提取和分解共同特征和特定特征。同时,我们提出了一种新的特征解纠缠损失,以进一步保证多参数特征的互补性和一致性。此外,我们构建了一个多参数交叉融合模块,将从多参数图像中提取的高级特征与语义属性进行融合。在多中心多参数数据集上进行的大量实验表明,所提出的框架在BI-RADS 4乳腺肿瘤诊断方面优于最先进的方法。代码可在https://github.com/rzk-code/MUBTD上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信