{"title":"Intelligent Reflecting Surface-Assisted Adaptive Beamforming for Blind Interference Suppression","authors":"Peilan Wang;Jun Fang;Bin Wang;Hongbin Li","doi":"10.1109/TSP.2025.3558965","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of adaptive beamforming (ABF) for intelligent reflecting surface (IRS)-assisted systems, where a single antenna receiver, aided by a close-by IRS, tries to decode signals from a legitimate transmitter in the presence of multiple unknown interference signals. Such a problem is formulated as an ABF problem with the objective of minimizing the average received signal power subject to certain constraints. Unlike canonical ABF in array signal processing, we do not have direct access to the covariance matrix that is needed for solving the ABF problem. Instead, for our problem, we only have some quadratic compressive measurements of the covariance matrix. To address this challenge, we propose a sample-efficient method that directly solves the ABF problem without explicitly inferring the covariance matrix. Compared with the methods which explicitly recover the covariance matrix from its quadratic compressive measurements, our proposed method achieves a substantial improvement in terms of sample efficiency. Simulation results show that our method, using a small number of measurements, can effectively nullify the interference signals and enhance the signal-to-interference-plus-noise ratio (SINR).","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1744-1758"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10959084/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the problem of adaptive beamforming (ABF) for intelligent reflecting surface (IRS)-assisted systems, where a single antenna receiver, aided by a close-by IRS, tries to decode signals from a legitimate transmitter in the presence of multiple unknown interference signals. Such a problem is formulated as an ABF problem with the objective of minimizing the average received signal power subject to certain constraints. Unlike canonical ABF in array signal processing, we do not have direct access to the covariance matrix that is needed for solving the ABF problem. Instead, for our problem, we only have some quadratic compressive measurements of the covariance matrix. To address this challenge, we propose a sample-efficient method that directly solves the ABF problem without explicitly inferring the covariance matrix. Compared with the methods which explicitly recover the covariance matrix from its quadratic compressive measurements, our proposed method achieves a substantial improvement in terms of sample efficiency. Simulation results show that our method, using a small number of measurements, can effectively nullify the interference signals and enhance the signal-to-interference-plus-noise ratio (SINR).
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.