Saswata Roy, Alen Senanian, Christopher S. Wang, Owen C. Wetherbee, Luojia Zhang, B. Cole, C. P. Larson, E. Yelton, Kartikeya Arora, Peter L. McMahon, B. L. T. Plourde, Baptiste Royer, Valla Fatemi
{"title":"Synthetic High Angular Momentum Spin Dynamics in a Microwave Oscillator","authors":"Saswata Roy, Alen Senanian, Christopher S. Wang, Owen C. Wetherbee, Luojia Zhang, B. Cole, C. P. Larson, E. Yelton, Kartikeya Arora, Peter L. McMahon, B. L. T. Plourde, Baptiste Royer, Valla Fatemi","doi":"10.1103/physrevx.15.021009","DOIUrl":null,"url":null,"abstract":"Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multilevel manifolds which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on demand to implement a continuous range of generators to accomplish linear and nonlinear HAMS dynamics. The spinlike dynamics are verified by demonstration of linear spin coherent [SU(2)] rotations, nonlinear spin rotations, and comparison to other manifolds like simply truncated oscillators. Our scheme allows universal control of a spin cat logical qubit encoding with interpretable drive pulses: We use linear operations to accomplish four logical gates and further show that nonlinear spin rotations can complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"38 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021009","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1/2 exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multilevel manifolds which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on demand to implement a continuous range of generators to accomplish linear and nonlinear HAMS dynamics. The spinlike dynamics are verified by demonstration of linear spin coherent [SU(2)] rotations, nonlinear spin rotations, and comparison to other manifolds like simply truncated oscillators. Our scheme allows universal control of a spin cat logical qubit encoding with interpretable drive pulses: We use linear operations to accomplish four logical gates and further show that nonlinear spin rotations can complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.