Efficient Compressing and Tuning Methods for Large Language Models: A Systematic Literature Review

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Gun Il Kim, Sunga Hwang, Beakcheol Jang
{"title":"Efficient Compressing and Tuning Methods for Large Language Models: A Systematic Literature Review","authors":"Gun Il Kim, Sunga Hwang, Beakcheol Jang","doi":"10.1145/3728636","DOIUrl":null,"url":null,"abstract":"Efficient compression and tuning techniques have become indispensable in addressing the increasing computational and memory demands of large language models (LLMs). While these models have demonstrated exceptional performance across a wide range of natural language processing tasks, their growing size and resource requirements pose significant challenges to accessibility and sustainability. This survey systematically reviews state-of-the-art methods in model compression, including compression techniques such as knowledge distillation, low-rank approximation, parameter pruning, and quantization, as well as tuning techniques such as parameter-efficient fine-tuning and inference optimization. Compression techniques, though well-established in traditional deep learning, require updated methodologies tailored to the scale and dynamics of LLMs. Simultaneously, parameter-efficient fine-tuning, exemplified by techniques like Low-Rank Adaptation (LoRA) and query tuning, emerges as a promising solution for adapting models with minimal resource overhead. This study provides a detailed taxonomy of these methods, examining their practical applications, strengths, and limitations. Critical gaps are identified in scalability, and the integration of compression and tuning strategies, signaling the need for unified frameworks and hybrid approaches to maximize efficiency and performance. By addressing these challenges, this survey aims to guide researchers toward sustainable, efficient, and accessible LLM development, ensuring their broader applicability across diverse domains while mitigating resource constraints.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"4 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3728636","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient compression and tuning techniques have become indispensable in addressing the increasing computational and memory demands of large language models (LLMs). While these models have demonstrated exceptional performance across a wide range of natural language processing tasks, their growing size and resource requirements pose significant challenges to accessibility and sustainability. This survey systematically reviews state-of-the-art methods in model compression, including compression techniques such as knowledge distillation, low-rank approximation, parameter pruning, and quantization, as well as tuning techniques such as parameter-efficient fine-tuning and inference optimization. Compression techniques, though well-established in traditional deep learning, require updated methodologies tailored to the scale and dynamics of LLMs. Simultaneously, parameter-efficient fine-tuning, exemplified by techniques like Low-Rank Adaptation (LoRA) and query tuning, emerges as a promising solution for adapting models with minimal resource overhead. This study provides a detailed taxonomy of these methods, examining their practical applications, strengths, and limitations. Critical gaps are identified in scalability, and the integration of compression and tuning strategies, signaling the need for unified frameworks and hybrid approaches to maximize efficiency and performance. By addressing these challenges, this survey aims to guide researchers toward sustainable, efficient, and accessible LLM development, ensuring their broader applicability across diverse domains while mitigating resource constraints.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信