Martina Oravcová, Minghua Nie, Takanori Otomo, Michael N Boddy
{"title":"SMC5/6-Mediated Plasmid Silencing is Directed by SIMC1-SLF2 and Antagonized by LT.","authors":"Martina Oravcová, Minghua Nie, Takanori Otomo, Michael N Boddy","doi":"10.1101/2025.03.27.645818","DOIUrl":null,"url":null,"abstract":"<p><p>SMC5/6 is unique amongst the Structural Maintenance of Chromosomes (SMC) complexes in its ability to repress transcription from extrachromosomal circular DNA (ecDNA), including viral genomes and plasmids. Previously, we showed that human SMC5/6 is regulated by two mutually exclusive subcomplexes-SIMC1-SLF2 and SLF1/2-the counterparts of yeast Nse5/6 (Oravcová, eLife, 2022). Notably, only SIMC1-SLF2 recruits SMC5/6 to SV40 Large T antigen (LT) foci in PML nuclear bodies (PML NBs), suggesting that these regulatory subcomplexes direct distinct roles of SMC5/6 on chromosomal versus ecDNA. However, their roles in plasmid repression remain unclear. Here, we demonstrate that SMC5/6-mediated repression of plasmid transcription depends exclusively on SIMC1-SLF2, whereas SLF1/2 is dispensable. Reinforcing its specialized role in ecDNA suppression, SIMC1-SLF2 does not participate in SMC5/6 recruitment to chromosomal DNA lesions. We further show that plasmid silencing requires a conserved interaction between SIMC1-SLF2 and SMC6, mirroring the functional relationship observed between yeast Nse5/6 and Smc6. As for viral silencing, plasmid repression depends on the SUMO pathway; however, unlike viral silencing, it does not require PML NBs. Additionally, we find that LT interacts with SMC5/6 and increases plasmid transcription to levels observed in SIMC1-SLF2-deficient cells-echoing the antagonistic roles of HBx (HBV) and Vpr (HIV-1) in viral genome repression. These findings expand the paradigm of viral antagonism against SMC5/6-mediated silencing, positioning LT as a novel player in this evolutionary tug-of-war.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.27.645818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
SMC5/6 is unique amongst the Structural Maintenance of Chromosomes (SMC) complexes in its ability to repress transcription from extrachromosomal circular DNA (ecDNA), including viral genomes and plasmids. Previously, we showed that human SMC5/6 is regulated by two mutually exclusive subcomplexes-SIMC1-SLF2 and SLF1/2-the counterparts of yeast Nse5/6 (Oravcová, eLife, 2022). Notably, only SIMC1-SLF2 recruits SMC5/6 to SV40 Large T antigen (LT) foci in PML nuclear bodies (PML NBs), suggesting that these regulatory subcomplexes direct distinct roles of SMC5/6 on chromosomal versus ecDNA. However, their roles in plasmid repression remain unclear. Here, we demonstrate that SMC5/6-mediated repression of plasmid transcription depends exclusively on SIMC1-SLF2, whereas SLF1/2 is dispensable. Reinforcing its specialized role in ecDNA suppression, SIMC1-SLF2 does not participate in SMC5/6 recruitment to chromosomal DNA lesions. We further show that plasmid silencing requires a conserved interaction between SIMC1-SLF2 and SMC6, mirroring the functional relationship observed between yeast Nse5/6 and Smc6. As for viral silencing, plasmid repression depends on the SUMO pathway; however, unlike viral silencing, it does not require PML NBs. Additionally, we find that LT interacts with SMC5/6 and increases plasmid transcription to levels observed in SIMC1-SLF2-deficient cells-echoing the antagonistic roles of HBx (HBV) and Vpr (HIV-1) in viral genome repression. These findings expand the paradigm of viral antagonism against SMC5/6-mediated silencing, positioning LT as a novel player in this evolutionary tug-of-war.