{"title":"Structured Random Binding: a minimal model of protein-protein interactions.","authors":"Ling-Nan Zou","doi":"10.1101/2025.03.26.645477","DOIUrl":null,"url":null,"abstract":"<p><p>We describe Structured Random Binding (SRB), a minimal model of protein-protein interactions rooted in the statistical physics of disordered systems. In this model, nonspecific binding is a generic consequence of the interaction between random proteins, exhibiting a phase transition from a high temperature state where nonspecific complexes are transient and lack well-defined interaction interfaces, to a low temperature state where the complex structure is frozen and a definite interaction interface is present. Numerically, weakly-bound nonspecific complexes can evolve into tightly-bound, highly specific complexes, but only if the structural correlation length along the peptide backbone is short; moreover, evolved tightly-bound homodimers favor the same interface structure that is predominant in real protein homodimers.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.26.645477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe Structured Random Binding (SRB), a minimal model of protein-protein interactions rooted in the statistical physics of disordered systems. In this model, nonspecific binding is a generic consequence of the interaction between random proteins, exhibiting a phase transition from a high temperature state where nonspecific complexes are transient and lack well-defined interaction interfaces, to a low temperature state where the complex structure is frozen and a definite interaction interface is present. Numerically, weakly-bound nonspecific complexes can evolve into tightly-bound, highly specific complexes, but only if the structural correlation length along the peptide backbone is short; moreover, evolved tightly-bound homodimers favor the same interface structure that is predominant in real protein homodimers.