In vivo self-renewal and expansion of quiescent stem cells from a non-human primate.

Jengmin Kang, Abhijnya Kanugovi, M Pilar J Stella, Zofija Frimand, Jean Farup, Andoni Urtasun, Shixuan Liu, Anne-Sofie Clausen, Heather Ishak, Summer Bui, Soochi Kim, Camille Ezran, Olga Botvinnik, Ermelinda Porpiglia, Mark Krasnow, Antoine de Morree, Thomas A Rando
{"title":"In vivo self-renewal and expansion of quiescent stem cells from a non-human primate.","authors":"Jengmin Kang, Abhijnya Kanugovi, M Pilar J Stella, Zofija Frimand, Jean Farup, Andoni Urtasun, Shixuan Liu, Anne-Sofie Clausen, Heather Ishak, Summer Bui, Soochi Kim, Camille Ezran, Olga Botvinnik, Ermelinda Porpiglia, Mark Krasnow, Antoine de Morree, Thomas A Rando","doi":"10.1101/2025.03.27.645793","DOIUrl":null,"url":null,"abstract":"<p><p>The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate <i>Microcebus murinus</i> (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( <i>Macaca fascicularis</i> ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.27.645793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate Microcebus murinus (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( Macaca fascicularis ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.

非人灵长类静止干细胞的体内自我更新和扩增。
开发非人灵长类动物模型对发育和再生生物学领域至关重要,因为这些模型比小鼠模型更接近人类生物学。基于单细胞RNAseq和荧光激活细胞分选技术,我们报告了非人灵长类动物Microcebus murinus(灰鼠狐猴)中两种静止干细胞群(骨骼肌干细胞(MuSCs)和被称为纤维脂肪生成祖细胞(FAPs)的间充质干细胞)的鉴定和功能特征。我们证明了MuSCs和FAPs在体内的增殖、分化和自我更新。通过将细胞表型分析与跨物种分子谱分析和药理学干预相结合,我们发现小鼠狐猴的MuSCs和FAPs与人类的相似度高于小鼠。我们发现了参与调节灵长类 MuSC 增殖和灵长类 FAP 成脂肪分化的意想不到的基因靶点。此外,我们发现小鼠狐猴肌肉的细胞组成比猕猴(Macaca fascicularis)肌肉更好地模拟了人类肌肉。最后,我们指出,我们的方法是在新动物模型中鉴定、分离和表征干细胞群的通用管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信