Kelsey Lyberger, Anna Rose Robinson, Lisa Couper, Isabel Delwel, Caroline Glidden, Crystal Qian, Aja Burslem, Faith Fernandez, Benjamen Gao, Gabriella Garcia, Julio Gomez, Caspar Griffin, Stephanie Jackson, Annalisa King, Olivia Manes, Andrew Song, Edward Tran, Erin A Mordecai
{"title":"A systematic review of climate-change driven range shifts in mosquito vectors.","authors":"Kelsey Lyberger, Anna Rose Robinson, Lisa Couper, Isabel Delwel, Caroline Glidden, Crystal Qian, Aja Burslem, Faith Fernandez, Benjamen Gao, Gabriella Garcia, Julio Gomez, Caspar Griffin, Stephanie Jackson, Annalisa King, Olivia Manes, Andrew Song, Edward Tran, Erin A Mordecai","doi":"10.1101/2025.03.25.645279","DOIUrl":null,"url":null,"abstract":"<p><p>As global temperatures rise, concerns about shifting mosquito ranges-and accompanying changes in the transmission of malaria, dengue, and other diseases-are mounting. However, systematic evidence for climate-driven changes in mosquito ranges remains limited. We conducted a systematic review of studies documenting expansions or contractions in medically important mosquito species. In total, 178 studies on six continents identified range expansions in 118 mosquito species. While over a third of these studies cited warming as a driver, fewer than 10% performed statistical tests of the role of climate. Instead, most expansions were linked to human-aided dispersal (e.g., trade, travel), land-use changes, and urbanization. Although several studies reported poleward or upward expansions consistent with climate warming, none demonstrated warm-edge contractions driven by rising temperatures, which are theoretically predicted in some settings. Rather than expanding into newly suitable areas, many expansions appear to be filling preexisting thermally suitable habitats. Our findings highlight the need for long-term mosquito monitoring, rigorous climate-attribution methods, and better documentation of confounding factors like land-use change and vector control efforts to disentangle climate-driven changes from other anthropogenic factors.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.25.645279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As global temperatures rise, concerns about shifting mosquito ranges-and accompanying changes in the transmission of malaria, dengue, and other diseases-are mounting. However, systematic evidence for climate-driven changes in mosquito ranges remains limited. We conducted a systematic review of studies documenting expansions or contractions in medically important mosquito species. In total, 178 studies on six continents identified range expansions in 118 mosquito species. While over a third of these studies cited warming as a driver, fewer than 10% performed statistical tests of the role of climate. Instead, most expansions were linked to human-aided dispersal (e.g., trade, travel), land-use changes, and urbanization. Although several studies reported poleward or upward expansions consistent with climate warming, none demonstrated warm-edge contractions driven by rising temperatures, which are theoretically predicted in some settings. Rather than expanding into newly suitable areas, many expansions appear to be filling preexisting thermally suitable habitats. Our findings highlight the need for long-term mosquito monitoring, rigorous climate-attribution methods, and better documentation of confounding factors like land-use change and vector control efforts to disentangle climate-driven changes from other anthropogenic factors.