A miniature CRISPR-Cas10 enzyme confers immunity by an inverse signaling pathway.

Erin E Doherty, Benjamin A Adler, Peter H Yoon, Kendall Hsieh, Kenneth Loi, Emily G Armbuster, Arushi Lahiri, Cydni S Bolling, Xander E Wilcox, Amogha Akkati, Anthony T Iavarone, Joe Pogliano, Jennifer A Doudna
{"title":"A miniature CRISPR-Cas10 enzyme confers immunity by an inverse signaling pathway.","authors":"Erin E Doherty, Benjamin A Adler, Peter H Yoon, Kendall Hsieh, Kenneth Loi, Emily G Armbuster, Arushi Lahiri, Cydni S Bolling, Xander E Wilcox, Amogha Akkati, Anthony T Iavarone, Joe Pogliano, Jennifer A Doudna","doi":"10.1101/2025.03.28.646030","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial and viral co-evolution has created immunity mechanisms involving oligonucleotide signaling that share mechanistic features with human anti-viral systems <sup>1</sup> . In these pathways, including CBASS and type III CRISPR systems in bacteria and cGAS-STING in humans, oligonucleotide synthesis occurs upon detection of virus or foreign genetic material in the cell, triggering the antiviral response <sup>2-4</sup> . In a surprising inversion of this process, we show here that the CRISPR-related enzyme mCpol synthesizes cyclic oligonucleotides constitutively as part of an active mechanism that maintains cell health. Cell-based experiments demonstrated that the absence or loss of mCpol-produced cyclic oligonucleotides triggers cell death, preventing spread of viruses that attempt immune evasion by depleting host cyclic nucleotides. Structural and mechanistic investigation revealed mCpol to be a di-adenylate cyclase whose product, c-di-AMP, prevents toxic oligomerization of the effector protein 2TMβ. Analysis of cells by fluorescence microscopy showed that lack of mCpol allows 2TMβ-mediated cell death due to inner membrane collapse. These findings unveil a powerful new defense strategy against virus-mediated immune suppression, expanding our understanding of oligonucleotides in cell health and disease. These results raise the possibility of similar protective roles for cyclic oligonucleotides in other organisms including humans.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.28.646030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial and viral co-evolution has created immunity mechanisms involving oligonucleotide signaling that share mechanistic features with human anti-viral systems 1 . In these pathways, including CBASS and type III CRISPR systems in bacteria and cGAS-STING in humans, oligonucleotide synthesis occurs upon detection of virus or foreign genetic material in the cell, triggering the antiviral response 2-4 . In a surprising inversion of this process, we show here that the CRISPR-related enzyme mCpol synthesizes cyclic oligonucleotides constitutively as part of an active mechanism that maintains cell health. Cell-based experiments demonstrated that the absence or loss of mCpol-produced cyclic oligonucleotides triggers cell death, preventing spread of viruses that attempt immune evasion by depleting host cyclic nucleotides. Structural and mechanistic investigation revealed mCpol to be a di-adenylate cyclase whose product, c-di-AMP, prevents toxic oligomerization of the effector protein 2TMβ. Analysis of cells by fluorescence microscopy showed that lack of mCpol allows 2TMβ-mediated cell death due to inner membrane collapse. These findings unveil a powerful new defense strategy against virus-mediated immune suppression, expanding our understanding of oligonucleotides in cell health and disease. These results raise the possibility of similar protective roles for cyclic oligonucleotides in other organisms including humans.

一种微型CRISPR-Cas10酶通过逆信号通路赋予免疫。
微生物和病毒的共同进化创造了涉及寡核苷酸信号的免疫机制,这些机制与人类抗病毒系统具有相同的机制特征。在这些途径中,包括细菌中的CBASS和III型CRISPR系统以及人类中的cGAS-STING,在细胞中检测到病毒或外来遗传物质时发生寡核苷酸合成,触发抗病毒反应2-4。在这一过程的一个令人惊讶的反转中,我们在这里展示了crispr相关酶mCpol合成环寡核苷酸,作为维持细胞健康的活性机制的一部分。基于细胞的实验表明,mcpol产生的环寡核苷酸的缺失或缺失会触发细胞死亡,阻止试图通过消耗宿主环核苷酸来逃避免疫的病毒的传播。结构和机制研究表明,mCpol是一种二腺苷酸环化酶,其产物c-二- amp可以阻止效应蛋白2TMβ的毒性寡聚化。荧光显微镜对细胞的分析显示,缺乏mCpol可使2tm β介导的细胞因内膜塌陷而死亡。这些发现揭示了一种针对病毒介导的免疫抑制的强大的新防御策略,扩大了我们对寡核苷酸在细胞健康和疾病中的理解。这些结果提高了环寡核苷酸在包括人类在内的其他生物中具有类似保护作用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信