Tissue classification from raw diffusion-weighted images using machine learning.

Medical physics Pub Date : 2025-04-08 DOI:10.1002/mp.17810
Guangyu Dan, Cui Feng, Zheng Zhong, Kaibao Sun, Ping-Shou Zhong, Daoyu Hu, Zhen Li, Xiaohong Joe Zhou
{"title":"Tissue classification from raw diffusion-weighted images using machine learning.","authors":"Guangyu Dan, Cui Feng, Zheng Zhong, Kaibao Sun, Ping-Shou Zhong, Daoyu Hu, Zhen Li, Xiaohong Joe Zhou","doi":"10.1002/mp.17810","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In diffusion-weighted imaging (DWI), a large collection of diffusion models is available to provide insights into tissue characteristics. However, these models are limited by predefined assumptions and computational challenges, potentially hindering the full extraction of information from the diffusion MR signal.</p><p><strong>Purpose: </strong>This study aimed at developing a MOdel-free Diffusion-wEighted MRI (MODEM) method for tissue differentiation by using a machine learning (ML) algorithm based on raw diffusion images without relying on any specific diffusion model. MODEM has been applied to both simulation data and cervical cancer diffusion images and compared with several diffusion models.</p><p><strong>Methods: </strong>With Institutional Review Board approval, 54 cervical cancer patients (median age, 52 years; age range, 29-73 years) participated in the study, including 26 in the early FIGO (International Federation of Gynecology and Obstetrics) stage (IB, 16; IIA, 10) and 28 the late stage (IIB, 8; IIIB, 14; IIIC, 1; IVA, 3; IVB, 2). The participants underwent DWI with 17 b-values (0 to 4500 s/mm<sup>2</sup>) at 3 Tesla. Synthetic diffusion MRI signals were also generated using Monte-Carlo simulation with Gaussian noise doping under varying substrates. MODEM with multilayer perceptron and five diffusion models (mono-exponential, intra-voxel incoherent-motion, diffusion kurtosis imaging, fractional order calculus, and continuous-time-random-walk models) were employed to distinguish different substrates in the simulation data and differentiate different pathological states (i.e., normal vs. cancerous tissue; and early-stage vs. late-stage cancers) in the cervical cancer dataset. Accuracy and area under the receiver operating characteristic (ROC) curve were evaluated. Mann-Whitney U-test was used to compare the area under the curve (AUC) and accuracy values between MODEM and the five diffusion models.</p><p><strong>Results: </strong>For the simulation dataset, MODEM produced a higher AUC and better accuracy, particularly in scenarios where the noise level exceeded 5%. For the cervical cancer dataset, MODEM yielded the highest AUC and accuracy in cervical cancer detection (AUC, 0.976; accuracy, 91.9%) and cervical cancer staging (AUC, 0.773; accuracy, 69.2%), significantly outperforming any of the diffusion models (p < 0.05).</p><p><strong>Conclusions: </strong>MODEM is useful for cervical cancer detection and staging and offers considerable advantages over analytical diffusion models for tissue characterization.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In diffusion-weighted imaging (DWI), a large collection of diffusion models is available to provide insights into tissue characteristics. However, these models are limited by predefined assumptions and computational challenges, potentially hindering the full extraction of information from the diffusion MR signal.

Purpose: This study aimed at developing a MOdel-free Diffusion-wEighted MRI (MODEM) method for tissue differentiation by using a machine learning (ML) algorithm based on raw diffusion images without relying on any specific diffusion model. MODEM has been applied to both simulation data and cervical cancer diffusion images and compared with several diffusion models.

Methods: With Institutional Review Board approval, 54 cervical cancer patients (median age, 52 years; age range, 29-73 years) participated in the study, including 26 in the early FIGO (International Federation of Gynecology and Obstetrics) stage (IB, 16; IIA, 10) and 28 the late stage (IIB, 8; IIIB, 14; IIIC, 1; IVA, 3; IVB, 2). The participants underwent DWI with 17 b-values (0 to 4500 s/mm2) at 3 Tesla. Synthetic diffusion MRI signals were also generated using Monte-Carlo simulation with Gaussian noise doping under varying substrates. MODEM with multilayer perceptron and five diffusion models (mono-exponential, intra-voxel incoherent-motion, diffusion kurtosis imaging, fractional order calculus, and continuous-time-random-walk models) were employed to distinguish different substrates in the simulation data and differentiate different pathological states (i.e., normal vs. cancerous tissue; and early-stage vs. late-stage cancers) in the cervical cancer dataset. Accuracy and area under the receiver operating characteristic (ROC) curve were evaluated. Mann-Whitney U-test was used to compare the area under the curve (AUC) and accuracy values between MODEM and the five diffusion models.

Results: For the simulation dataset, MODEM produced a higher AUC and better accuracy, particularly in scenarios where the noise level exceeded 5%. For the cervical cancer dataset, MODEM yielded the highest AUC and accuracy in cervical cancer detection (AUC, 0.976; accuracy, 91.9%) and cervical cancer staging (AUC, 0.773; accuracy, 69.2%), significantly outperforming any of the diffusion models (p < 0.05).

Conclusions: MODEM is useful for cervical cancer detection and staging and offers considerable advantages over analytical diffusion models for tissue characterization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信