Enhancing Radiology Clinical Histories Through Transformer-Based Automated Clinical Note Summarization.

Niloufar Eghbali, Chad Klochko, Zaid Mahdi, Laith Alhiari, Jonathan Lee, Beatrice Knisely, Joseph Craig, Mohammad M Ghassemi
{"title":"Enhancing Radiology Clinical Histories Through Transformer-Based Automated Clinical Note Summarization.","authors":"Niloufar Eghbali, Chad Klochko, Zaid Mahdi, Laith Alhiari, Jonathan Lee, Beatrice Knisely, Joseph Craig, Mohammad M Ghassemi","doi":"10.1007/s10278-025-01477-8","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient clinical information provided in radiology requests, coupled with the cumbersome nature of electronic health records (EHRs), poses significant challenges for radiologists in extracting pertinent clinical data and compiling detailed radiology reports. Considering the challenges and time involved in navigating electronic medical records (EMR), an automated method to accurately compress the text while maintaining key semantic information could significantly enhance the efficiency of radiologists' workflow. The purpose of this study is to develop and demonstrate an automated tool for clinical note summarization with the goal of extracting the most pertinent clinical information for the radiological assessments. We adopted a transfer learning methodology from the natural language processing domain to fine-tune a transformer model for abstracting clinical reports. We employed a dataset consisting of 1000 clinical notes from 970 patients who underwent knee MRI, all manually summarized by radiologists. The fine-tuning process involved a two-stage approach starting with self-supervised denoising and then focusing on the summarization task. The model successfully condensed clinical notes by 97% while aligning closely with radiologist-written summaries evidenced by a 0.9 cosine similarity and a ROUGE-1 score of 40.18. In addition, statistical analysis, indicated by a Fleiss kappa score of 0.32, demonstrated fair agreement among specialists on the model's effectiveness in producing more relevant clinical histories compared to those included in the exam requests. The proposed model effectively summarized clinical notes for knee MRI studies, thereby demonstrating potential for improving radiology reporting efficiency and accuracy.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01477-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Insufficient clinical information provided in radiology requests, coupled with the cumbersome nature of electronic health records (EHRs), poses significant challenges for radiologists in extracting pertinent clinical data and compiling detailed radiology reports. Considering the challenges and time involved in navigating electronic medical records (EMR), an automated method to accurately compress the text while maintaining key semantic information could significantly enhance the efficiency of radiologists' workflow. The purpose of this study is to develop and demonstrate an automated tool for clinical note summarization with the goal of extracting the most pertinent clinical information for the radiological assessments. We adopted a transfer learning methodology from the natural language processing domain to fine-tune a transformer model for abstracting clinical reports. We employed a dataset consisting of 1000 clinical notes from 970 patients who underwent knee MRI, all manually summarized by radiologists. The fine-tuning process involved a two-stage approach starting with self-supervised denoising and then focusing on the summarization task. The model successfully condensed clinical notes by 97% while aligning closely with radiologist-written summaries evidenced by a 0.9 cosine similarity and a ROUGE-1 score of 40.18. In addition, statistical analysis, indicated by a Fleiss kappa score of 0.32, demonstrated fair agreement among specialists on the model's effectiveness in producing more relevant clinical histories compared to those included in the exam requests. The proposed model effectively summarized clinical notes for knee MRI studies, thereby demonstrating potential for improving radiology reporting efficiency and accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信