Volumetric Material Decomposition Using Spectral Diffusion Posterior Sampling with a Compressed Polychromatic Forward Model.

ArXiv Pub Date : 2025-03-28
Xiao Jiang, Grace J Gang, J Webster Stayman
{"title":"Volumetric Material Decomposition Using Spectral Diffusion Posterior Sampling with a Compressed Polychromatic Forward Model.","authors":"Xiao Jiang, Grace J Gang, J Webster Stayman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously introduced Spectral Diffusion Posterior Sampling (Spectral DPS) as a framework for accurate one-step material decomposition by integrating analytic spectral system models with priors learned from large datasets. This work extends the 2D Spectral DPS algorithm to 3D by addressing potentially limiting large-memory requirements with a pre-trained 2D diffusion model for slice-by-slice processing and a compressed polychromatic forward model to ensure accurate physical modeling. Simulation studies demonstrate that the proposed memory-efficient 3D Spectral DPS enables material decomposition of clinically significant volume sizes. Quantitative analysis reveals that Spectral DPS outperforms other deep-learning algorithms, such as InceptNet and conditional DDPM in contrast quantification, inter-slice continuity, and resolution preservation. This study establishes a foundation for advancing one-step material decomposition in volumetric spectral CT.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have previously introduced Spectral Diffusion Posterior Sampling (Spectral DPS) as a framework for accurate one-step material decomposition by integrating analytic spectral system models with priors learned from large datasets. This work extends the 2D Spectral DPS algorithm to 3D by addressing potentially limiting large-memory requirements with a pre-trained 2D diffusion model for slice-by-slice processing and a compressed polychromatic forward model to ensure accurate physical modeling. Simulation studies demonstrate that the proposed memory-efficient 3D Spectral DPS enables material decomposition of clinically significant volume sizes. Quantitative analysis reveals that Spectral DPS outperforms other deep-learning algorithms, such as InceptNet and conditional DDPM in contrast quantification, inter-slice continuity, and resolution preservation. This study establishes a foundation for advancing one-step material decomposition in volumetric spectral CT.

基于压缩多色正演模型的光谱扩散后验采样的体积材料分解。
我们之前介绍过光谱扩散后验取样(Spectral DPS),它是一种通过将分析光谱系统模型与从大型数据集学习到的前验进行整合,从而实现一步精确材料分解的框架。这项研究将二维光谱 DPS 算法扩展到三维,利用预先训练的二维扩散模型进行逐片处理,并利用压缩多色前向模型确保精确的物理建模,从而解决了潜在的大内存限制要求。仿真研究表明,所提出的高效内存三维光谱 DPS 能够对具有临床意义的体积大小进行材料分解。定量分析显示,Spectral DPS 在对比度量化、切片间连续性和分辨率保持方面优于 InceptNet 和条件 DDPM 等其他深度学习算法。这项研究为在容积光谱 CT 中推进一步材料分解奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信