Protein-Ligand Structure and Affinity Prediction in CASP16 Using a Geometric Deep Learning Ensemble and Flow Matching.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alex Morehead, Jian Liu, Pawan Neupane, Nabin Giri, Jianlin Cheng
{"title":"Protein-Ligand Structure and Affinity Prediction in CASP16 Using a Geometric Deep Learning Ensemble and Flow Matching.","authors":"Alex Morehead, Jian Liu, Pawan Neupane, Nabin Giri, Jianlin Cheng","doi":"10.1002/prot.26827","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the structure of ligands bound to proteins is a foundational problem in modern biotechnology and drug discovery, yet little is known about how to combine the predictions of protein-ligand structure (poses) produced by the latest deep learning methods to identify the best poses and how to accurately estimate the binding affinity between a protein target and a list of ligand candidates. Further, a blind benchmarking and assessment of protein-ligand structure and binding affinity prediction is necessary to ensure it generalizes well to new settings. Towards this end, we introduce MULTICOM_ligand, a deep learning-based protein-ligand structure and binding affinity prediction ensemble featuring structural consensus ranking for unsupervised pose ranking and a new deep generative flow matching model for joint structure and binding affinity prediction. Notably, MULTICOM_ligand ranked among the top-5 ligand prediction methods in both protein-ligand structure prediction and binding affinity prediction in the 16th Critical Assessment of Techniques for Structure Prediction (CASP16), demonstrating its efficacy and utility for real-world drug discovery efforts. The source code for MULTICOM_ligand is freely available on GitHub.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26827","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the structure of ligands bound to proteins is a foundational problem in modern biotechnology and drug discovery, yet little is known about how to combine the predictions of protein-ligand structure (poses) produced by the latest deep learning methods to identify the best poses and how to accurately estimate the binding affinity between a protein target and a list of ligand candidates. Further, a blind benchmarking and assessment of protein-ligand structure and binding affinity prediction is necessary to ensure it generalizes well to new settings. Towards this end, we introduce MULTICOM_ligand, a deep learning-based protein-ligand structure and binding affinity prediction ensemble featuring structural consensus ranking for unsupervised pose ranking and a new deep generative flow matching model for joint structure and binding affinity prediction. Notably, MULTICOM_ligand ranked among the top-5 ligand prediction methods in both protein-ligand structure prediction and binding affinity prediction in the 16th Critical Assessment of Techniques for Structure Prediction (CASP16), demonstrating its efficacy and utility for real-world drug discovery efforts. The source code for MULTICOM_ligand is freely available on GitHub.

预测与蛋白质结合的配体结构是现代生物技术和药物发现中的一个基础问题,但对于如何将最新深度学习方法产生的蛋白质-配体结构(姿势)预测结果结合起来以确定最佳姿势,以及如何准确估计蛋白质靶标与配体候选列表之间的结合亲和力,却知之甚少。此外,有必要对蛋白质配体结构和结合亲和力预测进行盲基准测试和评估,以确保它能很好地推广到新的环境中。为此,我们介绍了 MULTICOM_ligand,这是一种基于深度学习的蛋白质配体结构和结合亲和力预测组合,其特点是用于无监督姿势排序的结构共识排序,以及用于联合结构和结合亲和力预测的新型深度生成流匹配模型。值得注意的是,MULTICOM_ligand 在第 16 届结构预测技术关键评估(CASP16)中跻身蛋白质配体结构预测和结合亲和力预测配体预测方法的前五名,证明了其在实际药物发现工作中的有效性和实用性。MULTICOM_ligand 的源代码可在 GitHub 上免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信