Cord blood metabolomic profiling in high risk newborns born to diabetic, obese, and overweight mothers: preliminary report.

IF 1.3 4区 医学 Q4 ENDOCRINOLOGY & METABOLISM
Özlem Ünal Uzun, Duygu Eneş, Müge Çınar, Ayla Günlemez Adugit, Büşra Uçar, Ali Duranoğlu, Ufuk Bozkurt Obuz, Mustafa Çelebier, İncilay Lay
{"title":"Cord blood metabolomic profiling in high risk newborns born to diabetic, obese, and overweight mothers: preliminary report.","authors":"Özlem Ünal Uzun, Duygu Eneş, Müge Çınar, Ayla Günlemez Adugit, Büşra Uçar, Ali Duranoğlu, Ufuk Bozkurt Obuz, Mustafa Çelebier, İncilay Lay","doi":"10.1515/jpem-2024-0605","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Newborns of diabetic and obese/overweight mothers face long-term metabolic risks. Untargeted cord blood metabolomic analysis using quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS) was performed to explore metabolic alterations and pathways in these high-risk infants.</p><p><strong>Methods: </strong>Cord blood samples were collected from 46 newborns born to mothers with gestational diabetes (10), obesity (14), overweight (18), type 2 diabetes mellitus (3), type 1 diabetes mellitus (1), and 20 newborns born to healthy mothers. Q-TOF LC/MS was used to investigate the alterations in cord blood metabolomic profiles. Data processing was conducted using MZmine 2.53. Putative metabolites were idendtified using MetaboAnalyst 6.0.</p><p><strong>Results: </strong>Distinct metabolite profiles were observed between diabetes and control groups. Significant identical trend in 19 metabolites were determined in both diabetes and obesity + overweight group vs. control group. Key pathways included steroid and bile acid biosynthesis. Upregulated oxidative stress, clues to sphingophospholipid metabolism, high levels of dihomo-gamma-linolenic acid (DGLA), pantothenic acid, and TRH were detected. The kynurenine pathway was prominent in the diabetes group.</p><p><strong>Conclusions: </strong>Estrogen metabolites from the 16- and 2-pathways may indicate metabolic risk, with increased downstream flux under diabetic conditions. Accelerated bile acid synthesis may alter fetal metabolic programming, since bile acids play crucial roles in cellular energy regulation and signaling. Elevated pantothenic acid, essential for the production of coenzyme-A, suggests significant alterations in carbohydrate, protein, and fat metabolism. High serum DGLA levels emerge as a potential biomarker for metabolic abnormalities. Increased plasma kynurenines could predict cardiovascular risks. Larger targeted studies are required to validate these metabolic profiles and pathways.</p>","PeriodicalId":50096,"journal":{"name":"Journal of Pediatric Endocrinology & Metabolism","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pediatric Endocrinology & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jpem-2024-0605","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Newborns of diabetic and obese/overweight mothers face long-term metabolic risks. Untargeted cord blood metabolomic analysis using quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS) was performed to explore metabolic alterations and pathways in these high-risk infants.

Methods: Cord blood samples were collected from 46 newborns born to mothers with gestational diabetes (10), obesity (14), overweight (18), type 2 diabetes mellitus (3), type 1 diabetes mellitus (1), and 20 newborns born to healthy mothers. Q-TOF LC/MS was used to investigate the alterations in cord blood metabolomic profiles. Data processing was conducted using MZmine 2.53. Putative metabolites were idendtified using MetaboAnalyst 6.0.

Results: Distinct metabolite profiles were observed between diabetes and control groups. Significant identical trend in 19 metabolites were determined in both diabetes and obesity + overweight group vs. control group. Key pathways included steroid and bile acid biosynthesis. Upregulated oxidative stress, clues to sphingophospholipid metabolism, high levels of dihomo-gamma-linolenic acid (DGLA), pantothenic acid, and TRH were detected. The kynurenine pathway was prominent in the diabetes group.

Conclusions: Estrogen metabolites from the 16- and 2-pathways may indicate metabolic risk, with increased downstream flux under diabetic conditions. Accelerated bile acid synthesis may alter fetal metabolic programming, since bile acids play crucial roles in cellular energy regulation and signaling. Elevated pantothenic acid, essential for the production of coenzyme-A, suggests significant alterations in carbohydrate, protein, and fat metabolism. High serum DGLA levels emerge as a potential biomarker for metabolic abnormalities. Increased plasma kynurenines could predict cardiovascular risks. Larger targeted studies are required to validate these metabolic profiles and pathways.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
176
审稿时长
3-6 weeks
期刊介绍: The aim of the Journal of Pediatric Endocrinology and Metabolism (JPEM) is to diffuse speedily new medical information by publishing clinical investigations in pediatric endocrinology and basic research from all over the world. JPEM is the only international journal dedicated exclusively to endocrinology in the neonatal, pediatric and adolescent age groups. JPEM is a high-quality journal dedicated to pediatric endocrinology in its broadest sense, which is needed at this time of rapid expansion of the field of endocrinology. JPEM publishes Reviews, Original Research, Case Reports, Short Communications and Letters to the Editor (including comments on published papers),. JPEM publishes supplements of proceedings and abstracts of pediatric endocrinology and diabetes society meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信