Ingrid Augusto, Moara Lemos, Wendell Girard-Dias, José de Anchieta Oliveira Filho, Pedro G Pascutti, Wanderley de Souza, Kildare Miranda
{"title":"New dimensions in acidocalcisome research: the potential of cryo-EM to uncover novel aspects of protozoan parasite physiology.","authors":"Ingrid Augusto, Moara Lemos, Wendell Girard-Dias, José de Anchieta Oliveira Filho, Pedro G Pascutti, Wanderley de Souza, Kildare Miranda","doi":"10.1128/mbio.01662-24","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling high-resolution, near-native visualization of macromolecular structures and entire cells. Its application to etiologic agents of diseases is an expanding field, particularly for those caused by viruses or unicellular eukaryotes, such as protozoan parasites and fungi. This review focuses on acidocalcisomes-ion-rich, multifunctional organelles essential for cell physiology and survival in several pathogens. The structure and function of these organelles are examined through a range of electron microscopy techniques, using <i>Trypanosoma cruzi</i> as a model. The advantages and limitations of the methods employed to study acidocalcisome morphofunctional organization-such as chemical fixation, plunge and high-pressure freezing, cryo-electron microscopy of vitrified sections (CEMOVIS), freeze-drying, freeze substitution, tomography, and microanalysis using X rays and inelastic scattered electrons-are discussed, alongside their contributions to our current understanding of acidocalcisome structure and function. Recent advances in cryo-EM and its potential to address longstanding questions and fill existing gaps in our understanding of parasite ion mobilization mechanisms and physiology are also discussed.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0166224"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.01662-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling high-resolution, near-native visualization of macromolecular structures and entire cells. Its application to etiologic agents of diseases is an expanding field, particularly for those caused by viruses or unicellular eukaryotes, such as protozoan parasites and fungi. This review focuses on acidocalcisomes-ion-rich, multifunctional organelles essential for cell physiology and survival in several pathogens. The structure and function of these organelles are examined through a range of electron microscopy techniques, using Trypanosoma cruzi as a model. The advantages and limitations of the methods employed to study acidocalcisome morphofunctional organization-such as chemical fixation, plunge and high-pressure freezing, cryo-electron microscopy of vitrified sections (CEMOVIS), freeze-drying, freeze substitution, tomography, and microanalysis using X rays and inelastic scattered electrons-are discussed, alongside their contributions to our current understanding of acidocalcisome structure and function. Recent advances in cryo-EM and its potential to address longstanding questions and fill existing gaps in our understanding of parasite ion mobilization mechanisms and physiology are also discussed.
期刊介绍:
mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.