Monjoy Saha, Mustapha Abubakar, Ruth M Pfeiffer, Thomas E Rohan, Máire A Duggan, Kathryn Richert-Boe, Jonas S Almeida, Gretchen L Gierach
{"title":"Deep learning analysis of hematoxylin and eosin-stained benign breast biopsies to predict future invasive breast cancer.","authors":"Monjoy Saha, Mustapha Abubakar, Ruth M Pfeiffer, Thomas E Rohan, Máire A Duggan, Kathryn Richert-Boe, Jonas S Almeida, Gretchen L Gierach","doi":"10.1093/jncics/pkaf037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Benign breast disease is an important risk factor for breast cancer development. In this study, we analyzed hematoxylin and eosin-stained whole-slide images from diagnostic benign breast disease biopsies using different deep learning approaches to predict which individuals would subsequently developed breast cancer (cases) or would not (controls).</p><p><strong>Methods: </strong>We randomly divided cases and controls from a nested case-control study of 946 women with benign breast disease into training (331 cases, 331 control individuals) and test (142 cases, 142 control individuals) groups. We employed customized VGG-16 and AutoML machine learning models for image-only classification using whole-slide images, logistic regression for classification using only clinicopathological characteristics, and a multimodal network combining whole-slide images and clinicopathological characteristics for classification.</p><p><strong>Results: </strong>Both image-only (area under the receiver operating characteristic curve [AUROC] = 0.83 [SE = 0.001] and 0.78 [SE = 0.001] for customized VGG-16 and AutoML models, respectively) and multimodal (AUROC = 0.89 [SE = 0.03]) networks had high discriminatory accuracy for breast cancer. The clinicopathological-characteristics-only model had the lowest AUROC (0.54 [SE = 0.03]). In addition, compared with the customized VGG-16 model, which performed better than the AutoML model, the multimodal network had improved accuracy (AUROC = 0.89 [SE = 0.03] vs 0.83 [SE = 0.02]), sensitivity (AUROC = 0.93 [SE = 0.04] vs 0.83 [SE = 0.003]), and specificity (AUROC = 0.86 [SE = 0.03] vs 0.84 [SE = 0.003]).</p><p><strong>Conclusion: </strong>This study opens promising avenues for breast cancer risk assessment in women with benign breast disease. Integrating whole-slide images and clinicopathological characteristics through a multimodal approach substantially improved predictive model performance. Future research will explore deep learning techniques to understand benign breast disease progression to invasive breast cancer.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkaf037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Benign breast disease is an important risk factor for breast cancer development. In this study, we analyzed hematoxylin and eosin-stained whole-slide images from diagnostic benign breast disease biopsies using different deep learning approaches to predict which individuals would subsequently developed breast cancer (cases) or would not (controls).
Methods: We randomly divided cases and controls from a nested case-control study of 946 women with benign breast disease into training (331 cases, 331 control individuals) and test (142 cases, 142 control individuals) groups. We employed customized VGG-16 and AutoML machine learning models for image-only classification using whole-slide images, logistic regression for classification using only clinicopathological characteristics, and a multimodal network combining whole-slide images and clinicopathological characteristics for classification.
Results: Both image-only (area under the receiver operating characteristic curve [AUROC] = 0.83 [SE = 0.001] and 0.78 [SE = 0.001] for customized VGG-16 and AutoML models, respectively) and multimodal (AUROC = 0.89 [SE = 0.03]) networks had high discriminatory accuracy for breast cancer. The clinicopathological-characteristics-only model had the lowest AUROC (0.54 [SE = 0.03]). In addition, compared with the customized VGG-16 model, which performed better than the AutoML model, the multimodal network had improved accuracy (AUROC = 0.89 [SE = 0.03] vs 0.83 [SE = 0.02]), sensitivity (AUROC = 0.93 [SE = 0.04] vs 0.83 [SE = 0.003]), and specificity (AUROC = 0.86 [SE = 0.03] vs 0.84 [SE = 0.003]).
Conclusion: This study opens promising avenues for breast cancer risk assessment in women with benign breast disease. Integrating whole-slide images and clinicopathological characteristics through a multimodal approach substantially improved predictive model performance. Future research will explore deep learning techniques to understand benign breast disease progression to invasive breast cancer.