Xiaoran Li, Xinru Xiao, Xin Han, Ye Cheng, Bixiao Cui, Meng Zhang, Huawei Liu, Jie Lu
{"title":"Magnetic resonance spectroscopy for enhanced multiparametric MRI characterization of [<sup>18</sup>F]FET PET-negative gliomas.","authors":"Xiaoran Li, Xinru Xiao, Xin Han, Ye Cheng, Bixiao Cui, Meng Zhang, Huawei Liu, Jie Lu","doi":"10.1186/s13550-025-01224-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Approximately 30-36% of gliomas presented with [<sup>18</sup>F]fluoroethyl-L-tyrosine ([<sup>18</sup>F]FET) PET-negative at primary diagnosis, which interferes with the differentiation of gliomas from other isolated brain lesions. Preoperative noninvasive identification of [<sup>18</sup>F]FET PET-negative gliomas to aggressive surgical treatment could reduce ineffective treatment and improve prognosis. This study aimed to assess the potential utility of multiparametric MRI with <sup>1</sup>H-magnetic resonance spectroscopy (<sup>1</sup>H-MRS) in the diagnosis of gliomas within [<sup>18</sup>F]FET PET-negative isolated cerebral lesions.</p><p><strong>Results: </strong>A total of 51 patients (mean age 44.35 ± 27.15 years, 26 males) with 37 gliomas and 14 non-gliomas were recruited for the study. More than half of PET-negative gliomas presented T2-FLAIR mismatch sign, whereas non-gliomas were more likely to present absence of T2-FLAIR mismatch sign (54.05% vs. 7.14%, p < 0.001). Choline to creatine (Cho/Cr) ratios in gliomas were significantly higher than those in non-gliomas (2.21 vs. 1.30, p < 0.001). Multiparametric MRI (AUC = 0.88) outperformed conventional MRI (AUC = 0.72) in differentiating gliomas from non-gliomas (NRI = 0.29, p = 0.02). And WHO grade was correlated with Cho/Cr and total lesion tracer standardized uptake (TLU) (r = 0.43 and 0.55; p = 0.007 and < 0.001; respectively). Low-grade PET-negative gliomas exhibit low levels of both TLU and Cho/Cr, but the distribution of TLU and Cho/Cr is more variable in high-grade gliomas. Furthermore, there was a moderated correlation between TLU and Cho/Cr in low-grade PET-negative gliomas (r = 0.54, p = 0.017), whereas there was no correlation in the high-grade PET-negative gliomas (r = -0.017, p = 0.95).</p><p><strong>Conclusion: </strong>Multiparametric MRI with <sup>1</sup>H-MRS demonstrates significant promise in enhancing the diagnosis and overall clinical management for [<sup>18</sup>F]FET PET-negative gliomas. Moreover, the correlation between TLU and Cho/Cr that was affected by tumor grading of 2021 WHO criteria provides a rationale for further research into the mechanisms of reduced [<sup>18</sup>F]FET uptake in gliomas.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"15 1","pages":"37"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-025-01224-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Approximately 30-36% of gliomas presented with [18F]fluoroethyl-L-tyrosine ([18F]FET) PET-negative at primary diagnosis, which interferes with the differentiation of gliomas from other isolated brain lesions. Preoperative noninvasive identification of [18F]FET PET-negative gliomas to aggressive surgical treatment could reduce ineffective treatment and improve prognosis. This study aimed to assess the potential utility of multiparametric MRI with 1H-magnetic resonance spectroscopy (1H-MRS) in the diagnosis of gliomas within [18F]FET PET-negative isolated cerebral lesions.
Results: A total of 51 patients (mean age 44.35 ± 27.15 years, 26 males) with 37 gliomas and 14 non-gliomas were recruited for the study. More than half of PET-negative gliomas presented T2-FLAIR mismatch sign, whereas non-gliomas were more likely to present absence of T2-FLAIR mismatch sign (54.05% vs. 7.14%, p < 0.001). Choline to creatine (Cho/Cr) ratios in gliomas were significantly higher than those in non-gliomas (2.21 vs. 1.30, p < 0.001). Multiparametric MRI (AUC = 0.88) outperformed conventional MRI (AUC = 0.72) in differentiating gliomas from non-gliomas (NRI = 0.29, p = 0.02). And WHO grade was correlated with Cho/Cr and total lesion tracer standardized uptake (TLU) (r = 0.43 and 0.55; p = 0.007 and < 0.001; respectively). Low-grade PET-negative gliomas exhibit low levels of both TLU and Cho/Cr, but the distribution of TLU and Cho/Cr is more variable in high-grade gliomas. Furthermore, there was a moderated correlation between TLU and Cho/Cr in low-grade PET-negative gliomas (r = 0.54, p = 0.017), whereas there was no correlation in the high-grade PET-negative gliomas (r = -0.017, p = 0.95).
Conclusion: Multiparametric MRI with 1H-MRS demonstrates significant promise in enhancing the diagnosis and overall clinical management for [18F]FET PET-negative gliomas. Moreover, the correlation between TLU and Cho/Cr that was affected by tumor grading of 2021 WHO criteria provides a rationale for further research into the mechanisms of reduced [18F]FET uptake in gliomas.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.