Metabolomic Profiling Reveals Distinct Pathways in Degenerated and Non-Degenerated Rotator Cuff Tears: Implications for Pathogenesis and Treatment.

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Furkan Bülbül, Emine Koç, Bilge Başak Fidan, Ozan Kaplan, Hasan Rüzgar, Onur Bilge, Mustafa Özer, Mustafa Çelebier, Feza Korkusuz
{"title":"Metabolomic Profiling Reveals Distinct Pathways in Degenerated and Non-Degenerated Rotator Cuff Tears: Implications for Pathogenesis and Treatment.","authors":"Furkan Bülbül, Emine Koç, Bilge Başak Fidan, Ozan Kaplan, Hasan Rüzgar, Onur Bilge, Mustafa Özer, Mustafa Çelebier, Feza Korkusuz","doi":"10.2174/0115665240364302250320025755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tissue metabolomics is a promising technology for evaluating in situ changes in disease pathogenesis. It addresses a significant knowledge gap in the study of both degenerated and non-degenerated supraspinatus (SSp) tendons. This study analyzed the metabolomic profiles associated with rotator cuff tears (RCTs).</p><p><strong>Purpose: </strong>RCTs cause loss of function and shoulder pain, with the SSp muscle being the most frequently affected. Inflammation and complex metabolic changes may play roles in its etiology. Evaluation of the metabolomic differences between the degenerated and non-degenerated SSp tissues of RCT patients was aimed.</p><p><strong>Methods: </strong>A cross-sectional study of 14 patients with RCTs, diagnosed through physical examination and magnetic resonance imaging, was conducted. Degenerate and non-degenerate SSp tissue debris were collected during arthroscopy. Untargeted metabolomic analysis of these samples was performed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-ToF-MS). Metabolic peaks were identified, matched, and normalized before further analysis. Partial least squaresdiscriminant analysis (PLS-DA), heatmap generation, unsupervised volcano plots, and fold-change analyses were conducted. A putative metabolite list was subsequently compiled to elucidate pathways of degeneration. These metabolites were matched with metabolic pathways using the RaMP-DB metabolite set library.</p><p><strong>Results: </strong>The tyrosine metabolism (p=4.93 x10-4), ferroptosis (p=1.25 x10-3), steroidogenesis (p=9.89 x10-4), and cholesterol biosynthesis (p=3.05 x10-3) were altered in the degenerated RCTs.</p><p><strong>Conclusion: </strong>These findings suggest that metabolomic alterations may be associated with the development of RCTs, with changes in tyrosine metabolism, ferroptosis, and lipid metabolism potentially contributing to muscle degeneration and inflammation. Identified disruptions in steroidogenesis provide new insights into the role of hormonal factors in RCT development. Understanding these metabolic pathways is clinically relevant in sports medicine, as it enables targeted therapies and personalized treatment strategies, ultimately enhancing recovery and improving outcomes for athletes.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240364302250320025755","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tissue metabolomics is a promising technology for evaluating in situ changes in disease pathogenesis. It addresses a significant knowledge gap in the study of both degenerated and non-degenerated supraspinatus (SSp) tendons. This study analyzed the metabolomic profiles associated with rotator cuff tears (RCTs).

Purpose: RCTs cause loss of function and shoulder pain, with the SSp muscle being the most frequently affected. Inflammation and complex metabolic changes may play roles in its etiology. Evaluation of the metabolomic differences between the degenerated and non-degenerated SSp tissues of RCT patients was aimed.

Methods: A cross-sectional study of 14 patients with RCTs, diagnosed through physical examination and magnetic resonance imaging, was conducted. Degenerate and non-degenerate SSp tissue debris were collected during arthroscopy. Untargeted metabolomic analysis of these samples was performed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-ToF-MS). Metabolic peaks were identified, matched, and normalized before further analysis. Partial least squaresdiscriminant analysis (PLS-DA), heatmap generation, unsupervised volcano plots, and fold-change analyses were conducted. A putative metabolite list was subsequently compiled to elucidate pathways of degeneration. These metabolites were matched with metabolic pathways using the RaMP-DB metabolite set library.

Results: The tyrosine metabolism (p=4.93 x10-4), ferroptosis (p=1.25 x10-3), steroidogenesis (p=9.89 x10-4), and cholesterol biosynthesis (p=3.05 x10-3) were altered in the degenerated RCTs.

Conclusion: These findings suggest that metabolomic alterations may be associated with the development of RCTs, with changes in tyrosine metabolism, ferroptosis, and lipid metabolism potentially contributing to muscle degeneration and inflammation. Identified disruptions in steroidogenesis provide new insights into the role of hormonal factors in RCT development. Understanding these metabolic pathways is clinically relevant in sports medicine, as it enables targeted therapies and personalized treatment strategies, ultimately enhancing recovery and improving outcomes for athletes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信