Synthetic Data in Healthcare and Drug Development: Definitions, Regulatory Frameworks, Issues.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Giuseppe Pasculli, Marco Virgolin, Puja Myles, Anna Vidovszky, Charles Fisher, Elisabetta Biasin, Miranda Mourby, Francesco Pappalardo, Saverio D'Amico, Mario Torchia, Alexander Chebykin, Vincenzo Carbone, Luca Emili, Daniel Roeshammar
{"title":"Synthetic Data in Healthcare and Drug Development: Definitions, Regulatory Frameworks, Issues.","authors":"Giuseppe Pasculli, Marco Virgolin, Puja Myles, Anna Vidovszky, Charles Fisher, Elisabetta Biasin, Miranda Mourby, Francesco Pappalardo, Saverio D'Amico, Mario Torchia, Alexander Chebykin, Vincenzo Carbone, Luca Emili, Daniel Roeshammar","doi":"10.1002/psp4.70021","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent and evolving regulatory frameworks regarding the usage of Artificial Intelligence (AI) in both drug and medical device development, the differentiation between data derived from observed ('true' or 'real') sources and artificial data obtained using process-driven and/or (data-driven) algorithmic processes is emerging as a critical consideration in clinical research and regulatory discourse. We conducted a critical literature review that revealed evidence of the current ambivalent usage of the term \"synthetic\" (along with derivative terms) to refer to \"true/observed\" data in the context of clinical trials and AI-generated data (or \"artificial\" data). This paper, stemming from a critical evaluation of different perspectives captured from the scientific literature and recent regulatory endeavors, seeks to elucidate this distinction, exploring their respective utilities, regulatory stances, and upcoming needs, as well as the potential for both data types in advancing medical science and therapeutic development.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent and evolving regulatory frameworks regarding the usage of Artificial Intelligence (AI) in both drug and medical device development, the differentiation between data derived from observed ('true' or 'real') sources and artificial data obtained using process-driven and/or (data-driven) algorithmic processes is emerging as a critical consideration in clinical research and regulatory discourse. We conducted a critical literature review that revealed evidence of the current ambivalent usage of the term "synthetic" (along with derivative terms) to refer to "true/observed" data in the context of clinical trials and AI-generated data (or "artificial" data). This paper, stemming from a critical evaluation of different perspectives captured from the scientific literature and recent regulatory endeavors, seeks to elucidate this distinction, exploring their respective utilities, regulatory stances, and upcoming needs, as well as the potential for both data types in advancing medical science and therapeutic development.

医疗保健和药物开发中的合成数据:定义、监管框架和问题。
随着最近和不断发展的关于在药物和医疗器械开发中使用人工智能(AI)的监管框架,从观察到的(“真实”或“真实”)来源获得的数据与使用过程驱动和/或(数据驱动)算法过程获得的人工数据之间的区别正在成为临床研究和监管话语中的一个关键考虑因素。我们进行了一项重要的文献综述,揭示了目前在临床试验和人工智能生成的数据(或“人工”数据)背景下,“合成”(以及衍生术语)一词用于指代“真实/观察到”数据的矛盾用法的证据。本文从科学文献和最近的监管努力中捕捉到的不同观点进行了批判性评估,旨在阐明这一区别,探索它们各自的用途、监管立场和即将到来的需求,以及这两种数据类型在推进医学科学和治疗发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信