{"title":"E3 ligase Skp2-mediated stabilization of survivin contributes to radioresistance.","authors":"Shiming Tan, Ruirui Wang, Jinglin Fang, Ming Yi, Pengfei Guo, Shuangze Han, Xiaoying Li, Yu Gan, Jinzhuang Liao, Xinfang Yu, Wei Li","doi":"10.1038/s41420-025-02463-3","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is a frequently occurring neck and head malignancy. Therapies for OSCC are improving, but radiotherapy resistance remains a major clinical challenge. Here, we found that the S-phase kinase-associated protein 2 (Skp2) is overexpressed in OSCC cells and tissues. Knockdown of Skp2 significantly increased the radiotherapy sensitivity of OSCC cells. Further potential mechanisms suggest that Skp2-deficient restoration of radiotherapy sensitivity in OSCC cells may induce intrinsic apoptosis through inhibition of the Akt/Wee1/CDK1 axis, which inhibits Survivin phosphorylation and promotes its ubiquitination and degradation by FBXL7. Clinicopathologic histological analysis showed that Skp2 was positively correlated with the expression of p-Akt and Survivin in OSCC tissues. Furthermore, knockdown or inhibition of Skp2 overcame the radiotherapy resistance of OSCC cells. In conclusion, our study demonstrated that targeting the Skp2-Survivin axis could serve as an attractive and promising potential therapeutic target for radiotherapy sensitization in OSCC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"151"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02463-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral squamous cell carcinoma (OSCC) is a frequently occurring neck and head malignancy. Therapies for OSCC are improving, but radiotherapy resistance remains a major clinical challenge. Here, we found that the S-phase kinase-associated protein 2 (Skp2) is overexpressed in OSCC cells and tissues. Knockdown of Skp2 significantly increased the radiotherapy sensitivity of OSCC cells. Further potential mechanisms suggest that Skp2-deficient restoration of radiotherapy sensitivity in OSCC cells may induce intrinsic apoptosis through inhibition of the Akt/Wee1/CDK1 axis, which inhibits Survivin phosphorylation and promotes its ubiquitination and degradation by FBXL7. Clinicopathologic histological analysis showed that Skp2 was positively correlated with the expression of p-Akt and Survivin in OSCC tissues. Furthermore, knockdown or inhibition of Skp2 overcame the radiotherapy resistance of OSCC cells. In conclusion, our study demonstrated that targeting the Skp2-Survivin axis could serve as an attractive and promising potential therapeutic target for radiotherapy sensitization in OSCC.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.