{"title":"Targeting Viperin prevents coxsackievirus B3-induced acute heart failure.","authors":"Yukang Yuan, Liping Qian, Ying Miao, Qun Cui, Ting Cao, Yong Yu, Tingting Zhang, Qian Zhao, Renxia Zhang, Tengfei Ren, Yibo Zuo, Qian Du, Caixia Qiao, Qiuyu Wu, Zhijin Zheng, Minqi Li, Y Eugene Chinn, Wei Xu, Tianqing Peng, Ruizhen Chen, Sidong Xiong, Hui Zheng","doi":"10.1038/s41421-025-00778-0","DOIUrl":null,"url":null,"abstract":"<p><p>Coxsackievirus B3 (CVB3)-induced acute heart failure (AHF) is a common cause of cardiogenic death in young- and middle-aged people. However, the key molecular events linking CVB3 to AHF remain largely unknown, resulting in a lack of targeted therapy strategies thus far. Here, we unexpectedly found that Viperin deficiency does not promote CVB3 infection but protects mice from CVB3-induced AHF. Importantly, cardiac-specific expression of Viperin can induce cardiac dysfunction. Mechanistically, CVB3-encoded 3C protease rescues Viperin protein expression in cardiomyocytes by lowering UBE4A. Viperin in turn interacts with and reduces STAT1 to activate SGK1-KCNQ1 signaling, and eventually leads to cardiac electrical dysfunction and subsequent AHF. Furthermore, we designed an interfering peptide VS-IP1, which blocked Viperin-mediated STAT1 degradation and therefore prevented CVB3-induced AHF. This study established the first signaling link between CVB3 and cardiac electrical dysfunction, and revealed the potential of interfering peptides targeting Viperin for the treatment of CVB3-induced AHF.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"34"},"PeriodicalIF":13.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00778-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coxsackievirus B3 (CVB3)-induced acute heart failure (AHF) is a common cause of cardiogenic death in young- and middle-aged people. However, the key molecular events linking CVB3 to AHF remain largely unknown, resulting in a lack of targeted therapy strategies thus far. Here, we unexpectedly found that Viperin deficiency does not promote CVB3 infection but protects mice from CVB3-induced AHF. Importantly, cardiac-specific expression of Viperin can induce cardiac dysfunction. Mechanistically, CVB3-encoded 3C protease rescues Viperin protein expression in cardiomyocytes by lowering UBE4A. Viperin in turn interacts with and reduces STAT1 to activate SGK1-KCNQ1 signaling, and eventually leads to cardiac electrical dysfunction and subsequent AHF. Furthermore, we designed an interfering peptide VS-IP1, which blocked Viperin-mediated STAT1 degradation and therefore prevented CVB3-induced AHF. This study established the first signaling link between CVB3 and cardiac electrical dysfunction, and revealed the potential of interfering peptides targeting Viperin for the treatment of CVB3-induced AHF.
Cell DiscoveryBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍:
Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research.
Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals.
In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.