Detecting time-irreversibility in multiscale systems: Correlation and response functions in the Lorenz96 model.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0248658
Niccolò Cocciaglia, Dario Lucente
{"title":"Detecting time-irreversibility in multiscale systems: Correlation and response functions in the Lorenz96 model.","authors":"Niccolò Cocciaglia, Dario Lucente","doi":"10.1063/5.0248658","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their relevance to geophysical systems, the investigation of multiscale systems through the lens of statistical mechanics has gained popularity in recent years. The aim of our work is the characterization of the nonequilibrium properties of the well-known two-scales Lorenz96 model, a dynamical system much used for testing ideas in geophysics, by studying either higher-order correlation functions or response to external perturbations of the energy. These tools in both equilibrium (inviscid) or non-equilibrium (viscous) systems provide clear evidence of their suitability for detecting time-reversal symmetry breaking and for characterizing transport properties also in this class of models. In particular, we characterize how localized energy perturbations are transported between the different scales, highlighting that perturbations of synoptic variables greatly impact advective variables but perturbations of the latter have a practically negligible effect on synoptic scales. Finally, we show that responses of global observables to finite size perturbations strongly depend on the perturbation protocol. This prevents the physical understanding of the system from observations of the relaxation process alone, a fact often overlooked.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0248658","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their relevance to geophysical systems, the investigation of multiscale systems through the lens of statistical mechanics has gained popularity in recent years. The aim of our work is the characterization of the nonequilibrium properties of the well-known two-scales Lorenz96 model, a dynamical system much used for testing ideas in geophysics, by studying either higher-order correlation functions or response to external perturbations of the energy. These tools in both equilibrium (inviscid) or non-equilibrium (viscous) systems provide clear evidence of their suitability for detecting time-reversal symmetry breaking and for characterizing transport properties also in this class of models. In particular, we characterize how localized energy perturbations are transported between the different scales, highlighting that perturbations of synoptic variables greatly impact advective variables but perturbations of the latter have a practically negligible effect on synoptic scales. Finally, we show that responses of global observables to finite size perturbations strongly depend on the perturbation protocol. This prevents the physical understanding of the system from observations of the relaxation process alone, a fact often overlooked.

检测多尺度系统中的时间不可逆性:Lorenz96模型中的相关和响应函数。
由于它们与地球物理系统的相关性,近年来,通过统计力学的视角对多尺度系统的研究得到了广泛的应用。我们工作的目的是通过研究高阶相关函数或对外部能量扰动的响应来表征众所周知的两尺度Lorenz96模型的非平衡特性。Lorenz96模型是一种在地球物理学中用于测试思想的动力系统。这些工具在平衡(无粘性)或非平衡(粘性)系统中都提供了明确的证据,证明它们适合于检测时间反转对称性破缺,也适合于在这类模型中表征输运性质。特别是,我们描述了局域能量扰动如何在不同尺度之间传输,强调天气变量的扰动对平流变量的影响很大,但后者的扰动对天气尺度的影响几乎可以忽略不计。最后,我们证明了全局可观测值对有限大小扰动的响应强烈依赖于扰动协议。这就阻止了仅仅通过观察松弛过程来对系统的物理理解,这是一个经常被忽视的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信