MRAgent: an LLM-based automated agent for causal knowledge discovery in disease via Mendelian randomization.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Wei Xu, Gang Luo, Weiyu Meng, Xiaobing Zhai, Keli Zheng, Ji Wu, Yanrong Li, Abao Xing, Junrong Li, Zhifan Li, Ke Zheng, Kefeng Li
{"title":"MRAgent: an LLM-based automated agent for causal knowledge discovery in disease via Mendelian randomization.","authors":"Wei Xu, Gang Luo, Weiyu Meng, Xiaobing Zhai, Keli Zheng, Ji Wu, Yanrong Li, Abao Xing, Junrong Li, Zhifan Li, Ke Zheng, Kefeng Li","doi":"10.1093/bib/bbaf140","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding causality in medical research is essential for developing effective interventions and diagnostic tools. Mendelian Randomization (MR) is a pivotal method for inferring causality through genetic data. However, MR analysis often requires pre-identification of exposure-outcome pairs from clinical experience or literature, which can be challenging to obtain. This poses difficulties for clinicians investigating causal factors of specific diseases. To address this, we introduce MRAgent, an innovative automated agent leveraging Large Language Models (LLMs) to enhance causal knowledge discovery in disease research. MRAgent autonomously scans scientific literature, discovers potential exposure-outcome pairs, and performs MR causal inference using extensive Genome-Wide Association Study data. We conducted both automated and human evaluations to compare different LLMs in operating MRAgent and provided a proof-of-concept case to demonstrate the complete workflow. MRAgent's capability to conduct large-scale causal analyses represents a significant advancement, equipping researchers and clinicians with a robust tool for exploring and validating causal relationships in complex diseases. Our code is public at https://github.com/xuwei1997/MRAgent.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf140","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding causality in medical research is essential for developing effective interventions and diagnostic tools. Mendelian Randomization (MR) is a pivotal method for inferring causality through genetic data. However, MR analysis often requires pre-identification of exposure-outcome pairs from clinical experience or literature, which can be challenging to obtain. This poses difficulties for clinicians investigating causal factors of specific diseases. To address this, we introduce MRAgent, an innovative automated agent leveraging Large Language Models (LLMs) to enhance causal knowledge discovery in disease research. MRAgent autonomously scans scientific literature, discovers potential exposure-outcome pairs, and performs MR causal inference using extensive Genome-Wide Association Study data. We conducted both automated and human evaluations to compare different LLMs in operating MRAgent and provided a proof-of-concept case to demonstrate the complete workflow. MRAgent's capability to conduct large-scale causal analyses represents a significant advancement, equipping researchers and clinicians with a robust tool for exploring and validating causal relationships in complex diseases. Our code is public at https://github.com/xuwei1997/MRAgent.

MRAgent:一个基于llm的自动代理,通过孟德尔随机化发现疾病的因果知识。
了解医学研究中的因果关系对于开发有效的干预措施和诊断工具至关重要。孟德尔随机化(MR)是通过遗传数据推断因果关系的关键方法。然而,MR分析通常需要从临床经验或文献中预先识别暴露-结果对,这可能具有挑战性。这给临床医生调查特定疾病的病因带来了困难。为了解决这个问题,我们介绍了MRAgent,一种利用大型语言模型(llm)来增强疾病研究中因果知识发现的创新自动化代理。MRAgent自动扫描科学文献,发现潜在的暴露-结果对,并使用广泛的全基因组关联研究数据执行MR因果推理。我们进行了自动化和人工评估,以比较MRAgent操作中不同的llm,并提供了一个概念验证案例来演示完整的工作流程。MRAgent进行大规模因果分析的能力是一项重大进步,为研究人员和临床医生提供了探索和验证复杂疾病因果关系的强大工具。我们的代码在https://github.com/xuwei1997/MRAgent上公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信