Task-radMBNet: An Improved Task-Driven Dynamic Graph Sparsity Pattern Radiomics-Based Morphological Brain Network for Alzheimer's Disease Characterization.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Limei Song, Zhiwei Song, Pengzhi Nan, Qiang Zheng
{"title":"Task-radMBNet: An Improved Task-Driven Dynamic Graph Sparsity Pattern Radiomics-Based Morphological Brain Network for Alzheimer's Disease Characterization.","authors":"Limei Song, Zhiwei Song, Pengzhi Nan, Qiang Zheng","doi":"10.1089/brain.2024.0053","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The study of task-driven dynamic adaptive graph sparsity patterns in Alzheimer's disease (AD) analysis is of great importance, as it allows for better focus on regions and connections of interest and enhances task sensitivity. <b><i>Methods:</i></b> In this study, we introduced a task-driven dynamic adaptive graph sparsity model (called task-driven radiomics-based morphological brain network [Task-radMBNet]) for AD diagnosis based on radiomics-based morphological brain network (radMBN). Specifically, the Task-radMBNet was established by devising a connectivity feature-based graph convolutional network (GCN) channel (called a connectivity-GCN channel) and a radiomics feature-based GCN channel (called a radiomics-GCN channel), where the two GCN channels shared a same dynamic sparse brain network in graph convolution but worked for different aims separately. The connectivity-GCN channel dynamically learned the graph's sparse topology that best suits the target task, while the radiomics-GCN channel combined radiomics node features and dynamic topology to improve AD diagnostic accuracy. <b><i>Results:</i></b> The Task-radMBNet achieved superior classification accuracy of 87.8% and 86.0% in early AD diagnosis across a total of 1273 subjects within the AD Neuroimaging Initiative and European Diffusion Tensor Imaging (DTI) Study on Dementia databases. We also visualized the topology heat map and important connectivity under different network sparse settings. <b><i>Conclusions:</i></b> The results demonstrated significant promise in the diagnosis of neurological disorders by integrating Task-radMBNet with radMBN.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The study of task-driven dynamic adaptive graph sparsity patterns in Alzheimer's disease (AD) analysis is of great importance, as it allows for better focus on regions and connections of interest and enhances task sensitivity. Methods: In this study, we introduced a task-driven dynamic adaptive graph sparsity model (called task-driven radiomics-based morphological brain network [Task-radMBNet]) for AD diagnosis based on radiomics-based morphological brain network (radMBN). Specifically, the Task-radMBNet was established by devising a connectivity feature-based graph convolutional network (GCN) channel (called a connectivity-GCN channel) and a radiomics feature-based GCN channel (called a radiomics-GCN channel), where the two GCN channels shared a same dynamic sparse brain network in graph convolution but worked for different aims separately. The connectivity-GCN channel dynamically learned the graph's sparse topology that best suits the target task, while the radiomics-GCN channel combined radiomics node features and dynamic topology to improve AD diagnostic accuracy. Results: The Task-radMBNet achieved superior classification accuracy of 87.8% and 86.0% in early AD diagnosis across a total of 1273 subjects within the AD Neuroimaging Initiative and European Diffusion Tensor Imaging (DTI) Study on Dementia databases. We also visualized the topology heat map and important connectivity under different network sparse settings. Conclusions: The results demonstrated significant promise in the diagnosis of neurological disorders by integrating Task-radMBNet with radMBN.

Task-radMBNet:一种改进的任务驱动的动态图稀疏模式放射组学脑形态网络,用于阿尔茨海默病的表征。
背景:研究任务驱动的动态自适应图稀疏模式在阿尔茨海默病(AD)分析中具有重要意义,因为它可以更好地关注感兴趣的区域和连接,并提高任务敏感性。方法:在本研究中,我们引入了一种任务驱动的动态自适应图稀疏模型(称为任务驱动的基于放射组学的形态学脑网络[Task-radMBNet]),用于基于放射组学的形态学脑网络(radMBN)的AD诊断。具体来说,通过设计一个基于连接特征的图卷积网络(GCN)通道(称为连接-GCN通道)和一个基于放射组学特征的GCN通道(称为放射组学-GCN通道)来建立Task-radMBNet,其中两个GCN通道在图卷积中共享相同的动态稀疏脑网络,但分别为不同的目标工作。connectivity-GCN通道动态学习最适合目标任务的图稀疏拓扑,radiomics- gcn通道将radiomics节点特征与动态拓扑相结合,提高AD诊断准确率。结果:Task-radMBNet在阿尔茨海默病神经成像倡议和欧洲弥散张量成像(DTI)痴呆症研究数据库中对1273名受试者的早期阿尔茨海默病诊断中获得了87.8%和86.0%的优异分类准确率。我们还可视化了不同网络稀疏设置下的拓扑热图和重要连通性。结论:结合Task-radMBNet和radMBN,研究结果在神经系统疾病的诊断中具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信