Functional disparities of malonyl-ACP decarboxylase between Xanthomonas campestris and Xanthomonas oryzae.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mingfeng Yan, Yonghong Yu, Lizhen Luo, Jingtong Su, Jincheng Ma, Zhe Hu, Haihong Wang
{"title":"Functional disparities of malonyl-ACP decarboxylase between <i>Xanthomonas campestris</i> and <i>Xanthomonas oryzae</i>.","authors":"Mingfeng Yan, Yonghong Yu, Lizhen Luo, Jingtong Su, Jincheng Ma, Zhe Hu, Haihong Wang","doi":"10.1128/aem.02436-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Xanthomonas campestris</i> pv. <i>campestris</i> (<i>Xcc</i>) and <i>X. oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) are crucial plant pathogenic bacteria, causing crucifer black rot and rice leaf blight, respectively. Both bacterial species encode a protein containing the YiiD_C domain, designated MadB, which exhibits an 87.5% sequence identity between their MadBs. The <i>madB</i> genes from either <i>Xoo</i> or <i>Xcc</i> successfully restored the growth defect in <i>Ralstonia solanacearum</i> and <i>Escherichia coli fabH</i> mutants <i>in vivo. In vitro</i> assays demonstrated that MadB proteins possess malonyl-ACP decarboxylase activity, although <i>Xcc</i> MadB exhibited lower activity compared with <i>Xoo</i> MadB. Mutation of <i>madB</i> in both <i>Xoo</i> and <i>Xcc</i> strains led to decreased pathogenicity in their respective host plants. Interestingly, the <i>Xoo madB</i> mutant exhibited a significant increase in branched-chain fatty acid production, whereas the <i>Xcc madB</i> mutant showed only minor changes in fatty acid composition. Despite the reduction in exopolysaccharide (EPS) synthesis due to <i>madB</i> mutation in both <i>Xoo</i> and <i>Xcc</i>, EPS production in the <i>Xoo madB</i> mutant could be restored by exogenous sodium acetate supplementation. In contrast, sodium acetate failed to restore EPS synthesis in the <i>Xcc madB</i> mutant. Biochemical and genetic analyses indicated that these divergent physiological roles arise from the distinct biochemical functions of MadB in the two bacteria. In <i>Xoo</i>, the fatty acid synthesis (FAS) pathway mediated by MadB operates independently of the FAS pathway mediated by FabH. Conversely, in <i>Xcc</i>, the FAS pathway mediated by FabH is the primary route, with MadB's pathway serving a supplementary and regulatory role. Further analysis of gene organization and expression regulation of <i>madB</i> in both bacteria corroborates these distinctions.</p><p><strong>Importance: </strong>Despite the high conservation of the mad gene within the Proteobacteria, the physiological roles of the Mad protein remain largely unclear. Xoo and Xcc are bacteria with very close phylogenetic relationships, both encoding malonyl-ACP decarboxylase (MadB). However, MadB demonstrates substantial physiological function variations between these two species. This study demonstrates that even in closely related bacteria, homologous genes have adopted different evolutionary pathways to adapt to diverse living environments, forming unique gene expression regulation mechanisms. This has led to the biochemical functional divergence of homologous proteins within their respective species, ultimately resulting in distinct physiological functions.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0243624"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02436-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Xanthomonas campestris pv. campestris (Xcc) and X. oryzae pv. oryzae (Xoo) are crucial plant pathogenic bacteria, causing crucifer black rot and rice leaf blight, respectively. Both bacterial species encode a protein containing the YiiD_C domain, designated MadB, which exhibits an 87.5% sequence identity between their MadBs. The madB genes from either Xoo or Xcc successfully restored the growth defect in Ralstonia solanacearum and Escherichia coli fabH mutants in vivo. In vitro assays demonstrated that MadB proteins possess malonyl-ACP decarboxylase activity, although Xcc MadB exhibited lower activity compared with Xoo MadB. Mutation of madB in both Xoo and Xcc strains led to decreased pathogenicity in their respective host plants. Interestingly, the Xoo madB mutant exhibited a significant increase in branched-chain fatty acid production, whereas the Xcc madB mutant showed only minor changes in fatty acid composition. Despite the reduction in exopolysaccharide (EPS) synthesis due to madB mutation in both Xoo and Xcc, EPS production in the Xoo madB mutant could be restored by exogenous sodium acetate supplementation. In contrast, sodium acetate failed to restore EPS synthesis in the Xcc madB mutant. Biochemical and genetic analyses indicated that these divergent physiological roles arise from the distinct biochemical functions of MadB in the two bacteria. In Xoo, the fatty acid synthesis (FAS) pathway mediated by MadB operates independently of the FAS pathway mediated by FabH. Conversely, in Xcc, the FAS pathway mediated by FabH is the primary route, with MadB's pathway serving a supplementary and regulatory role. Further analysis of gene organization and expression regulation of madB in both bacteria corroborates these distinctions.

Importance: Despite the high conservation of the mad gene within the Proteobacteria, the physiological roles of the Mad protein remain largely unclear. Xoo and Xcc are bacteria with very close phylogenetic relationships, both encoding malonyl-ACP decarboxylase (MadB). However, MadB demonstrates substantial physiological function variations between these two species. This study demonstrates that even in closely related bacteria, homologous genes have adopted different evolutionary pathways to adapt to diverse living environments, forming unique gene expression regulation mechanisms. This has led to the biochemical functional divergence of homologous proteins within their respective species, ultimately resulting in distinct physiological functions.

油菜黄单胞菌与米黄单胞菌丙二酰acp脱羧酶的功能差异。
野油菜黄单胞菌(Xanthomonas campestris pv. campestris,Xcc)和禾谷黄单胞菌(X. oryzae pv. oryzae,Xoo)是重要的植物病原菌,分别引起十字花科黑腐病和水稻叶枯病。这两种细菌都编码一种含有 YiiD_C 结构域的蛋白质,命名为 MadB,它们的 MadB 之间有 87.5% 的序列相同性。Xoo 或 Xcc 的 madB 基因成功地恢复了茄属拉氏菌和大肠杆菌 fabH 突变体在体内的生长缺陷。体外试验表明,MadB 蛋白具有丙二酰-ACP 脱羧酶活性,但与 Xoo MadB 相比,Xcc MadB 的活性较低。Xoo 和 Xcc 菌株中的 MadB 基因突变导致其在各自寄主植物中的致病性降低。有趣的是,Xoo madB 突变体的支链脂肪酸产量显著增加,而 Xcc madB 突变体的脂肪酸组成仅有轻微变化。尽管 Xoo 和 Xcc 的 madB 突变导致外多糖(EPS)合成减少,但 Xoo madB 突变体的 EPS 产量可以通过补充外源醋酸钠来恢复。相反,醋酸钠不能恢复 Xcc madB 突变体的 EPS 合成。生化和遗传分析表明,这些不同的生理作用源于 MadB 在两种细菌中不同的生化功能。在 Xoo 中,由 MadB 介导的脂肪酸合成(FAS)途径独立于由 FabH 介导的脂肪酸合成途径。相反,在 Xcc 中,FabH 介导的脂肪酸合成途径是主要途径,而 MadB 的途径则起辅助和调节作用。对两种细菌中 madB 的基因组织和表达调控的进一步分析证实了这些区别:重要意义:尽管蛋白细菌中的 Mad 基因高度保守,但 Mad 蛋白的生理作用在很大程度上仍不清楚。Xoo 和 Xcc 是系统发育关系非常密切的细菌,它们都编码丙二酰-ACP 脱羧酶(MadB)。然而,这两个物种的 MadB 在生理功能上存在很大差异。这项研究表明,即使在亲缘关系很近的细菌中,同源基因也会采用不同的进化途径来适应不同的生存环境,形成独特的基因表达调控机制。这导致了同源蛋白在各自物种内的生化功能分化,最终形成了不同的生理功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信