Firdaus Ahmad Ahanger, Ayaz Ahmad Manhas, Umar Nabi Tak, Gousia, Saima Sidiq, Showkat Rashid, Mohd Sajid Lone, Aijaz Ahmad Dar
{"title":"Micelle Assisted Multi-Step Energy Relay in a Blend of Fluorophores as a Potential Light Harvesting System","authors":"Firdaus Ahmad Ahanger, Ayaz Ahmad Manhas, Umar Nabi Tak, Gousia, Saima Sidiq, Showkat Rashid, Mohd Sajid Lone, Aijaz Ahmad Dar","doi":"10.1002/cptc.202400322","DOIUrl":null,"url":null,"abstract":"<p>We report a pH-responsive system comprising three pH responsive fluorophores, 7-Hydroxy coumarin (7HC), Fluorescein (Flu), and Rhodamine B (RhB) wherein an efficient two-step Förster Resonance Energy Transfer (FRET) process is facilitated. Upon excitation of 7HC, energy is sequentially transferred from 7HC (primary donor) to Flu (primary acceptor) and then to RhB (secondary acceptor). The FRET processes were studied at pH 7 and 12 in the presence of surfactants: cationic Tetradecyltrimethylammonium bromide (TTAB), anionic Sodium Dodecyl Sulfate (SDS), and neutral polyoxyethylene[4] lauryl ether (Brij 30). Differences in FRET efficiencies across surfactant media were interpreted by analyzing the solubilization sites of the fluorophores using UV-Visible and fluorescence spectroscopy. The pH-dependence of the FRET acted as an ON-OFF switch, showing higher efficiency in alkaline media. Among the surfactant systems, the two-step FRET operated most efficiently in alkaline TTAB micelles, with efficiencies reaching up to 50 % for 7HC to Flu (FRET-1), 30 % for Flu to RhB (FRET-2), and 23 % for the overall transfer. At a donor-to-acceptor ratio of 1000/80/80, energy transfer efficiencies touched 74 % for FRET-1 and 84 % for FRET-2. This highlights TTAB micelles as promising scaffolds for efficient multi-step FRET-based artificial light-harvesting systems.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400322","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a pH-responsive system comprising three pH responsive fluorophores, 7-Hydroxy coumarin (7HC), Fluorescein (Flu), and Rhodamine B (RhB) wherein an efficient two-step Förster Resonance Energy Transfer (FRET) process is facilitated. Upon excitation of 7HC, energy is sequentially transferred from 7HC (primary donor) to Flu (primary acceptor) and then to RhB (secondary acceptor). The FRET processes were studied at pH 7 and 12 in the presence of surfactants: cationic Tetradecyltrimethylammonium bromide (TTAB), anionic Sodium Dodecyl Sulfate (SDS), and neutral polyoxyethylene[4] lauryl ether (Brij 30). Differences in FRET efficiencies across surfactant media were interpreted by analyzing the solubilization sites of the fluorophores using UV-Visible and fluorescence spectroscopy. The pH-dependence of the FRET acted as an ON-OFF switch, showing higher efficiency in alkaline media. Among the surfactant systems, the two-step FRET operated most efficiently in alkaline TTAB micelles, with efficiencies reaching up to 50 % for 7HC to Flu (FRET-1), 30 % for Flu to RhB (FRET-2), and 23 % for the overall transfer. At a donor-to-acceptor ratio of 1000/80/80, energy transfer efficiencies touched 74 % for FRET-1 and 84 % for FRET-2. This highlights TTAB micelles as promising scaffolds for efficient multi-step FRET-based artificial light-harvesting systems.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.