Fengyuan Li, Yang Yang, Dilnaz Kadyrma, Anar Dosmukhambetova, Prof. Zhe Liu, Prof. Zhanar Kalkozova, Prof. Ruihao Chen, Prof. Hongqiang Wang
{"title":"Beyond the Horizon: Exploration of Perovskite Solar Cells in Extreme Environments","authors":"Fengyuan Li, Yang Yang, Dilnaz Kadyrma, Anar Dosmukhambetova, Prof. Zhe Liu, Prof. Zhanar Kalkozova, Prof. Ruihao Chen, Prof. Hongqiang Wang","doi":"10.1002/cptc.202400337","DOIUrl":null,"url":null,"abstract":"<p>Current research on perovskite solar cells (PSCs) predominantly targets terrestrial applications, with limited studies in extreme environments. Deploying PSCs in space and underwater necessitates meeting stringent performance and stability criteria. For space, PSCs must withstand high radiation and temperature extremes, while underwater, light intensity attenuation, spectrum changes, and varying water quality can degrade PSCs performance. Inspiringly, PSCs offer several advantages, including being lightweight, cost-effective, easy to manufacture, and having adjustable bandgaps. These features make them more promising for applications in extreme conditions versus other photovoltaic (PV) devices. To further advance research on PSCs in extreme environments, this concept briefly describes the background of PSC applications in extreme conditions, summarizes the environmental characteristics and their impacts on the devices in both space and underwater settings, and comprehensively reviews the latest advancements in these fields. Finally, potential strategies for ensuring the long-term stable operation of PSCs under extreme stressors are proposed.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400337","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current research on perovskite solar cells (PSCs) predominantly targets terrestrial applications, with limited studies in extreme environments. Deploying PSCs in space and underwater necessitates meeting stringent performance and stability criteria. For space, PSCs must withstand high radiation and temperature extremes, while underwater, light intensity attenuation, spectrum changes, and varying water quality can degrade PSCs performance. Inspiringly, PSCs offer several advantages, including being lightweight, cost-effective, easy to manufacture, and having adjustable bandgaps. These features make them more promising for applications in extreme conditions versus other photovoltaic (PV) devices. To further advance research on PSCs in extreme environments, this concept briefly describes the background of PSC applications in extreme conditions, summarizes the environmental characteristics and their impacts on the devices in both space and underwater settings, and comprehensively reviews the latest advancements in these fields. Finally, potential strategies for ensuring the long-term stable operation of PSCs under extreme stressors are proposed.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.