M. V. Zamula, V. G. Kolesnichenko, A. V. Stepanenko, N. I. Tyschenko, O. V. Shyrokov, V. V. Khardikov, D. M. Demirskyi, O. O. Vasylkiv, H. Y. Borodianska, A. V. Ragulya
{"title":"Mechanical and Dielectric Properties of Si3N4-Based Ceramics","authors":"M. V. Zamula, V. G. Kolesnichenko, A. V. Stepanenko, N. I. Tyschenko, O. V. Shyrokov, V. V. Khardikov, D. M. Demirskyi, O. O. Vasylkiv, H. Y. Borodianska, A. V. Ragulya","doi":"10.1007/s11106-025-00464-6","DOIUrl":null,"url":null,"abstract":"<p>The effect of sintering-activating Y<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub> additives on the mechanical and dielectric properties of Si<sub>3</sub>N<sub>4</sub> and Si<sub>3</sub>N<sub>4</sub>–BN ceramics consolidated by spark plasma sintering was examined. The heating rate and applied pressure were maintained at 50°C/min and 35 MPa, respectively. The holding time at a sintering temperature of 1800°C varied depending on the composition of the oxide additives. The Si<sub>3</sub>N<sub>4</sub>–BN ceramics with Y<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> additives exhibited a 30% reduction in mechanical properties (hardness and fracture toughness) compared to Si<sub>3</sub>N<sub>4</sub>–Y<sub>2</sub>O<sub>3</sub> or Si<sub>3</sub>N<sub>4</sub>–Y<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> ceramics. The Si<sub>3</sub>N<sub>4</sub> ceramics demonstrated resistance to deformation at temperatures ranging from 20 to 900°C. Specifically, Si<sub>3</sub>N<sub>4</sub> ceramics with Y<sub>2</sub>O<sub>3</sub> or Y<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> additives showed average strengths of approximately 950 and 820 MPa, whereas Si<sub>3</sub>N<sub>4</sub>–BN ceramics demonstrated a strength of 490 MPa. An increase in temperature from 1000 to 1400°C for all ceramics studied resulted in a gradual decrease in bending strength to approximately 200 MPa. The strength at room and elevated temperatures, Vickers hardness of approximately 4 GPa and 15.5 GPa, and fracture toughness of about 7.7 MPa · m<sup>1/2</sup> meet the current requirements for this type of ceramics. Radiofrequency measurements showed that dense Si<sub>3</sub>N<sub>4</sub>-based ceramics had a dielectric constant of 8. When 10 wt.% BN was added, the dielectric constant of the composite decreased by approximately 8%. Additionally, residual porosity of about 10% further decreased the dielectric constant of the Si<sub>3</sub>N<sub>4</sub>–BN composite by around 13% (ε ~ 6.3). This reduction in the dielectric constant had a positive effect on radio transparency. The dielectric loss tangent of the test ceramics did not exceed 2 · 10<sup>–3</sup>.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 5-6","pages":"308 - 317"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-025-00464-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of sintering-activating Y2O3 and SiO2–Y2O3 additives on the mechanical and dielectric properties of Si3N4 and Si3N4–BN ceramics consolidated by spark plasma sintering was examined. The heating rate and applied pressure were maintained at 50°C/min and 35 MPa, respectively. The holding time at a sintering temperature of 1800°C varied depending on the composition of the oxide additives. The Si3N4–BN ceramics with Y2O3–SiO2 additives exhibited a 30% reduction in mechanical properties (hardness and fracture toughness) compared to Si3N4–Y2O3 or Si3N4–Y2O3–SiO2 ceramics. The Si3N4 ceramics demonstrated resistance to deformation at temperatures ranging from 20 to 900°C. Specifically, Si3N4 ceramics with Y2O3 or Y2O3–SiO2 additives showed average strengths of approximately 950 and 820 MPa, whereas Si3N4–BN ceramics demonstrated a strength of 490 MPa. An increase in temperature from 1000 to 1400°C for all ceramics studied resulted in a gradual decrease in bending strength to approximately 200 MPa. The strength at room and elevated temperatures, Vickers hardness of approximately 4 GPa and 15.5 GPa, and fracture toughness of about 7.7 MPa · m1/2 meet the current requirements for this type of ceramics. Radiofrequency measurements showed that dense Si3N4-based ceramics had a dielectric constant of 8. When 10 wt.% BN was added, the dielectric constant of the composite decreased by approximately 8%. Additionally, residual porosity of about 10% further decreased the dielectric constant of the Si3N4–BN composite by around 13% (ε ~ 6.3). This reduction in the dielectric constant had a positive effect on radio transparency. The dielectric loss tangent of the test ceramics did not exceed 2 · 10–3.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.