Long time behavior of solutions to the generalized Boussinesq equation

IF 1.6 3区 数学 Q1 MATHEMATICS
Amin Esfahani, Gulcin M. Muslu
{"title":"Long time behavior of solutions to the generalized Boussinesq equation","authors":"Amin Esfahani,&nbsp;Gulcin M. Muslu","doi":"10.1007/s13324-025-01048-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the generalized Boussinesq equation (gBq) as a model for the water wave problem with surface tension. Our study begins with the analysis of the initial value problem within Sobolev spaces, where we derive improved conditions for global existence and finite-time blow-up of solutions, extending previous results to lower Sobolev indices. Furthermore, we explore the time-decay behavior of solutions in Bessel potential and modulation spaces, establishing global well-posedness and time-decay estimates in these function spaces. Using Pohozaev-type identities, we demonstrate the non-existence of solitary waves for specific parameter regimes. A significant contribution of this work is the numerical generation of solitary wave solutions for the gBq equation using the Petviashvili iteration method. Additionally, we propose a Fourier pseudo-spectral numerical method to study the time evolution of solutions, particularly addressing the <i>gap interval</i> where theoretical results on global existence or blow-up are unavailable in the Sobolev spaces. Our numerical results provide new insights by confirming theoretical predictions in covered cases and filling gaps in unexplored scenarios. This comprehensive analysis not only clarifies the theoretical and numerical landscape of the gBq equation but also offers valuable tools for further investigations.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01048-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01048-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the generalized Boussinesq equation (gBq) as a model for the water wave problem with surface tension. Our study begins with the analysis of the initial value problem within Sobolev spaces, where we derive improved conditions for global existence and finite-time blow-up of solutions, extending previous results to lower Sobolev indices. Furthermore, we explore the time-decay behavior of solutions in Bessel potential and modulation spaces, establishing global well-posedness and time-decay estimates in these function spaces. Using Pohozaev-type identities, we demonstrate the non-existence of solitary waves for specific parameter regimes. A significant contribution of this work is the numerical generation of solitary wave solutions for the gBq equation using the Petviashvili iteration method. Additionally, we propose a Fourier pseudo-spectral numerical method to study the time evolution of solutions, particularly addressing the gap interval where theoretical results on global existence or blow-up are unavailable in the Sobolev spaces. Our numerical results provide new insights by confirming theoretical predictions in covered cases and filling gaps in unexplored scenarios. This comprehensive analysis not only clarifies the theoretical and numerical landscape of the gBq equation but also offers valuable tools for further investigations.

广义Boussinesq方程解的长时间行为
本文研究了具有表面张力的水波问题的广义Boussinesq方程(gBq)。我们的研究首先分析了Sobolev空间中的初值问题,在那里我们得到了解的整体存在和有限时间爆破的改进条件,将以前的结果推广到更低的Sobolev指数。此外,我们探讨了解在贝塞尔势空间和调制空间中的时间衰减行为,建立了这些函数空间中的全局适定性和时间衰减估计。利用pohozaev型恒等式,我们证明了在特定参数域中孤立波的不存在性。这项工作的一个重要贡献是使用Petviashvili迭代法数值生成gBq方程的孤波解。此外,我们提出了一种傅立叶伪谱数值方法来研究解的时间演化,特别是解决了在Sobolev空间中无法获得全局存在或爆炸理论结果的间隙区间。我们的数值结果通过确认覆盖情况下的理论预测和填补未探索场景中的空白提供了新的见解。这种全面的分析不仅澄清了gBq方程的理论和数值景观,而且为进一步的研究提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信