2D-Variation convolution-based generative adversarial network for unsupervised time series anomaly detection: a MSTL enhanced data preprocessing approach
IF 3.4 2区 计算机科学Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"2D-Variation convolution-based generative adversarial network for unsupervised time series anomaly detection: a MSTL enhanced data preprocessing approach","authors":"Qingdong Wang, Lei Zou, Weibo Liu","doi":"10.1007/s10489-025-06469-3","DOIUrl":null,"url":null,"abstract":"<div><p>Time series anomaly detection (TSAD) is a critical task in various research fields such as quantitative trading, cyber attack detection, and semiconductor outlier detection. As a binary classification task, the performance of TSAD is significantly influenced by the data imbalance problem, where the datasets heavily skew towards the normal class due to the extreme scarcity of abnormal data. Furthermore, the limited availability of anomaly data makes it challenging to perform manual labeling, which leads to the development of unsupervised anomaly detection approaches. In this paper, we propose a novel generative adversarial network (GAN) with Multiple-Seasonal-Trend decomposition using Loess (MSTL) data preprocessing algorithm for unsupervised anomaly detection on time series data. With the MSTL data preprocessing algorithm, the network architecture is simplified, thereby alleviating computational burden. A 2D-variation convolution-based method is integrated into the GAN to enhance feature extraction and generalization capabilities. To avoid the model collapse problem caused by data deficiency, multiple generators are employed, and a joint loss function is designed to improve the robustness of the training process. Experiments on several benchmark datasets from various domains demonstrate the efficacy and superiority of our approach compared to existing competitive approaches.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06469-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Time series anomaly detection (TSAD) is a critical task in various research fields such as quantitative trading, cyber attack detection, and semiconductor outlier detection. As a binary classification task, the performance of TSAD is significantly influenced by the data imbalance problem, where the datasets heavily skew towards the normal class due to the extreme scarcity of abnormal data. Furthermore, the limited availability of anomaly data makes it challenging to perform manual labeling, which leads to the development of unsupervised anomaly detection approaches. In this paper, we propose a novel generative adversarial network (GAN) with Multiple-Seasonal-Trend decomposition using Loess (MSTL) data preprocessing algorithm for unsupervised anomaly detection on time series data. With the MSTL data preprocessing algorithm, the network architecture is simplified, thereby alleviating computational burden. A 2D-variation convolution-based method is integrated into the GAN to enhance feature extraction and generalization capabilities. To avoid the model collapse problem caused by data deficiency, multiple generators are employed, and a joint loss function is designed to improve the robustness of the training process. Experiments on several benchmark datasets from various domains demonstrate the efficacy and superiority of our approach compared to existing competitive approaches.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.