Ekramy M. Elmorsy, Ayat B. Al-Ghafari, Huda A. Al Doghaither, Mona M. Elghareeb, Mouhamed Alsaqati
{"title":"Fucoxanthinol Mitigates the Cytotoxic Effect of Chlorpyrifos and MPTP on the Dopaminergic Differentiation of SH-SY5Y Human Neuroblastoma Cells","authors":"Ekramy M. Elmorsy, Ayat B. Al-Ghafari, Huda A. Al Doghaither, Mona M. Elghareeb, Mouhamed Alsaqati","doi":"10.1007/s12031-025-02342-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the neuroprotective effects of fucoxanthinol (FXL) against the toxic activities of two compounds known to induce neurotoxic effects in humans and animals. MPTP (1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine) induces Parkinson’s disease (PD)-like phenotypes by inhibiting mitochondrial complex I in dopaminergic neurons. Chlorpyrifos (CPF), another neurotoxic agent, is associated with acute and long-term neurotoxicity primarily through acetylcholinesterase (AChE) inhibition. FXL demonstrated the ability to reverse the neurotoxic effects of CPF and MPTP in SH-SY5Y dopaminergic neuronal cell models. Treatment with FXL enhances mitochondrial function in SH-SY5Y cells exposed to CPF and MPTP, as demonstrated by increased levels of Adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), mitochondrial complexes activities, and oxygen consumption rates, pyruvate dehydrogenase (PDH) activities, and mitophagy pathways. This improvement highlights FXL’s ability to counteract the mitochondrial dysfunction induced by these neurotoxic agents. Additionally, FXL reduces oxidative damage and enhances cell viability. At the molecular level, the neuroprotective effects were also associated with the modulation of apoptotic cell markers, including Bcl- 2 and the oxidative damage markers. Molecular docking data further support the outcomes of our in vitro studies. Multivariable analysis highlights the neuroprotective effects of FXL. These findings indicate the potential of FXL to mitigate CPF- and MPTP-induced neurotoxicity, suggesting its promise as a therapeutic agent for managing neuronal damage observe in PD.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02342-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02342-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the neuroprotective effects of fucoxanthinol (FXL) against the toxic activities of two compounds known to induce neurotoxic effects in humans and animals. MPTP (1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine) induces Parkinson’s disease (PD)-like phenotypes by inhibiting mitochondrial complex I in dopaminergic neurons. Chlorpyrifos (CPF), another neurotoxic agent, is associated with acute and long-term neurotoxicity primarily through acetylcholinesterase (AChE) inhibition. FXL demonstrated the ability to reverse the neurotoxic effects of CPF and MPTP in SH-SY5Y dopaminergic neuronal cell models. Treatment with FXL enhances mitochondrial function in SH-SY5Y cells exposed to CPF and MPTP, as demonstrated by increased levels of Adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), mitochondrial complexes activities, and oxygen consumption rates, pyruvate dehydrogenase (PDH) activities, and mitophagy pathways. This improvement highlights FXL’s ability to counteract the mitochondrial dysfunction induced by these neurotoxic agents. Additionally, FXL reduces oxidative damage and enhances cell viability. At the molecular level, the neuroprotective effects were also associated with the modulation of apoptotic cell markers, including Bcl- 2 and the oxidative damage markers. Molecular docking data further support the outcomes of our in vitro studies. Multivariable analysis highlights the neuroprotective effects of FXL. These findings indicate the potential of FXL to mitigate CPF- and MPTP-induced neurotoxicity, suggesting its promise as a therapeutic agent for managing neuronal damage observe in PD.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.