Fucoxanthinol Mitigates the Cytotoxic Effect of Chlorpyrifos and MPTP on the Dopaminergic Differentiation of SH-SY5Y Human Neuroblastoma Cells

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ekramy M. Elmorsy, Ayat B. Al-Ghafari, Huda A. Al Doghaither, Mona M. Elghareeb, Mouhamed Alsaqati
{"title":"Fucoxanthinol Mitigates the Cytotoxic Effect of Chlorpyrifos and MPTP on the Dopaminergic Differentiation of SH-SY5Y Human Neuroblastoma Cells","authors":"Ekramy M. Elmorsy,&nbsp;Ayat B. Al-Ghafari,&nbsp;Huda A. Al Doghaither,&nbsp;Mona M. Elghareeb,&nbsp;Mouhamed Alsaqati","doi":"10.1007/s12031-025-02342-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the neuroprotective effects of fucoxanthinol (FXL) against the toxic activities of two compounds known to induce neurotoxic effects in humans and animals. MPTP (1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine) induces Parkinson’s disease (PD)-like phenotypes by inhibiting mitochondrial complex I in dopaminergic neurons. Chlorpyrifos (CPF), another neurotoxic agent, is associated with acute and long-term neurotoxicity primarily through acetylcholinesterase (AChE) inhibition. FXL demonstrated the ability to reverse the neurotoxic effects of CPF and MPTP in SH-SY5Y dopaminergic neuronal cell models. Treatment with FXL enhances mitochondrial function in SH-SY5Y cells exposed to CPF and MPTP, as demonstrated by increased levels of Adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), mitochondrial complexes activities, and oxygen consumption rates, pyruvate dehydrogenase (PDH) activities, and mitophagy pathways. This improvement highlights FXL’s ability to counteract the mitochondrial dysfunction induced by these neurotoxic agents. Additionally, FXL reduces oxidative damage and enhances cell viability. At the molecular level, the neuroprotective effects were also associated with the modulation of apoptotic cell markers, including Bcl- 2 and the oxidative damage markers. Molecular docking data further support the outcomes of our in vitro studies. Multivariable analysis highlights the neuroprotective effects of FXL. These findings indicate the potential of FXL to mitigate CPF- and MPTP-induced neurotoxicity, suggesting its promise as a therapeutic agent for managing neuronal damage observe in PD.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02342-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02342-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the neuroprotective effects of fucoxanthinol (FXL) against the toxic activities of two compounds known to induce neurotoxic effects in humans and animals. MPTP (1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine) induces Parkinson’s disease (PD)-like phenotypes by inhibiting mitochondrial complex I in dopaminergic neurons. Chlorpyrifos (CPF), another neurotoxic agent, is associated with acute and long-term neurotoxicity primarily through acetylcholinesterase (AChE) inhibition. FXL demonstrated the ability to reverse the neurotoxic effects of CPF and MPTP in SH-SY5Y dopaminergic neuronal cell models. Treatment with FXL enhances mitochondrial function in SH-SY5Y cells exposed to CPF and MPTP, as demonstrated by increased levels of Adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), mitochondrial complexes activities, and oxygen consumption rates, pyruvate dehydrogenase (PDH) activities, and mitophagy pathways. This improvement highlights FXL’s ability to counteract the mitochondrial dysfunction induced by these neurotoxic agents. Additionally, FXL reduces oxidative damage and enhances cell viability. At the molecular level, the neuroprotective effects were also associated with the modulation of apoptotic cell markers, including Bcl- 2 and the oxidative damage markers. Molecular docking data further support the outcomes of our in vitro studies. Multivariable analysis highlights the neuroprotective effects of FXL. These findings indicate the potential of FXL to mitigate CPF- and MPTP-induced neurotoxicity, suggesting its promise as a therapeutic agent for managing neuronal damage observe in PD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信