MENSA: Multi-Dataset Harmonized Pretraining for Semantic Segmentation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bowen Shi;Xiaopeng Zhang;Yaoming Wang;Wenrui Dai;Junni Zou;Hongkai Xiong
{"title":"MENSA: Multi-Dataset Harmonized Pretraining for Semantic Segmentation","authors":"Bowen Shi;Xiaopeng Zhang;Yaoming Wang;Wenrui Dai;Junni Zou;Hongkai Xiong","doi":"10.1109/TMM.2024.3521851","DOIUrl":null,"url":null,"abstract":"Existing pretraining methods for semantic segmentation are hampered by the task gap between global image -level pretraining and local pixel-level finetuning. Joint dense-level pretraining is a promising alternative to exploit off-the-shelf annotations from diverse segmentation datasets but suffers from low-quality class embeddings and inconsistent data and supervision signals across multiple datasets by directly employing CLIP. To overcome these challenges, we propose a novel <underline>M</u>ulti-datas<underline>E</u>t harmo<underline>N</u>ized pretraining framework for <underline>S</u>emantic s<underline>E</u>gmentation (MENSA). MENSA incorporates high-quality language embeddings and momentum-updated visual embeddings to effectively model the class relationships in the embedding space and thereby provide reliable supervision information for each category. To further adapt to multiple datasets, we achieve one-to-many pixel-embedding pairing with cross-dataset multi-label mapping through cross-modal information exchange to mitigate inconsistent supervision signals and introduce region-level and pixel-level cross-dataset mixing for varying data distribution. Experimental results demonstrate that MENSA is a powerful foundation segmentation model that consistently outperforms popular supervised or unsupervised ImageNet pretrained models for various benchmarks under standard fine-tuning. Furthermore, MENSA is shown to significantly benefit frozen-backbone fine-tuning and zero-shot learning by endowing pixel-level distinctiveness to learned representations.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2127-2140"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814086/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing pretraining methods for semantic segmentation are hampered by the task gap between global image -level pretraining and local pixel-level finetuning. Joint dense-level pretraining is a promising alternative to exploit off-the-shelf annotations from diverse segmentation datasets but suffers from low-quality class embeddings and inconsistent data and supervision signals across multiple datasets by directly employing CLIP. To overcome these challenges, we propose a novel Multi-datasEt harmoNized pretraining framework for Semantic sEgmentation (MENSA). MENSA incorporates high-quality language embeddings and momentum-updated visual embeddings to effectively model the class relationships in the embedding space and thereby provide reliable supervision information for each category. To further adapt to multiple datasets, we achieve one-to-many pixel-embedding pairing with cross-dataset multi-label mapping through cross-modal information exchange to mitigate inconsistent supervision signals and introduce region-level and pixel-level cross-dataset mixing for varying data distribution. Experimental results demonstrate that MENSA is a powerful foundation segmentation model that consistently outperforms popular supervised or unsupervised ImageNet pretrained models for various benchmarks under standard fine-tuning. Furthermore, MENSA is shown to significantly benefit frozen-backbone fine-tuning and zero-shot learning by endowing pixel-level distinctiveness to learned representations.
语义分割的多数据集协调预训练
现有的语义分割预训练方法受到全局图像级预训练和局部像素级微调之间的任务差距的制约。联合密集级预训练是一种很有前途的替代方法,可以利用来自不同分割数据集的现成注释,但直接使用CLIP会导致低质量的类嵌入以及跨多个数据集的数据和监督信号不一致。为了克服这些挑战,我们提出了一种新的多数据集协调语义分割(MENSA)预训练框架。MENSA结合了高质量的语言嵌入和动量更新的视觉嵌入,有效地建模嵌入空间中的类关系,从而为每个类别提供可靠的监督信息。为了进一步适应多数据集,我们通过跨模态信息交换实现一对多像素嵌入配对和跨数据集多标签映射,以减轻不一致的监督信号,并引入区域级和像素级跨数据集混合以适应不同的数据分布。实验结果表明,MENSA是一个强大的基础分割模型,在标准微调下,在各种基准测试中始终优于流行的有监督或无监督ImageNet预训练模型。此外,MENSA通过赋予学习表征像素级的独特性,显着有利于冻结骨干微调和零射击学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信