SPDFusion:A Semantic Prior Knowledge-Driven Method for Infrared and Visible Image Fusion

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Quanquan Xiao;Haiyan Jin;Haonan Su;Yuanlin Zhang;Zhaolin Xiao;Bin Wang
{"title":"SPDFusion:A Semantic Prior Knowledge-Driven Method for Infrared and Visible Image Fusion","authors":"Quanquan Xiao;Haiyan Jin;Haonan Su;Yuanlin Zhang;Zhaolin Xiao;Bin Wang","doi":"10.1109/TMM.2024.3521848","DOIUrl":null,"url":null,"abstract":"Infrared and visible image fusion is currently an important research direction in the field of multimodal image fusion, which aims to utilize the complementary information between infrared images and visible images to generate a new image containing richer information. In recent years, many deep learning-based methods for infrared and visible image fusion have emerged.However, most of these approaches ignore the importance of semantic information in image fusion, resulting in the generation of fused images that do not perform well enough in human visual perception and advanced visual tasks.To address this problem, we propose a semantic prior knowledge-driven infrared and visible image fusion method. The method utilizes a pre-trained semantic segmentation model to acquire semantic information of infrared and visible images, and drives the fusion process of infrared and visible images through semantic feature perception module and semantic feature embedding module.Meanwhile, we divide the fused image into each category block and consider them as components, and utilize the regional semantic adversarial loss to enhance the adversarial network generation ability in different regions, thus improving the quality of the fused image.Through extensive experiments on widely used datasets, the results show that our approach outperforms current leading algorithms in both human eye visualization and advanced visual tasks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1691-1705"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814643/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared and visible image fusion is currently an important research direction in the field of multimodal image fusion, which aims to utilize the complementary information between infrared images and visible images to generate a new image containing richer information. In recent years, many deep learning-based methods for infrared and visible image fusion have emerged.However, most of these approaches ignore the importance of semantic information in image fusion, resulting in the generation of fused images that do not perform well enough in human visual perception and advanced visual tasks.To address this problem, we propose a semantic prior knowledge-driven infrared and visible image fusion method. The method utilizes a pre-trained semantic segmentation model to acquire semantic information of infrared and visible images, and drives the fusion process of infrared and visible images through semantic feature perception module and semantic feature embedding module.Meanwhile, we divide the fused image into each category block and consider them as components, and utilize the regional semantic adversarial loss to enhance the adversarial network generation ability in different regions, thus improving the quality of the fused image.Through extensive experiments on widely used datasets, the results show that our approach outperforms current leading algorithms in both human eye visualization and advanced visual tasks.
SPDFusion:一种语义先验知识驱动的红外与可见光图像融合方法
红外与可见光图像融合是目前多模态图像融合领域的一个重要研究方向,其目的是利用红外图像与可见光图像之间的互补信息,生成包含更丰富信息的新图像。近年来,出现了许多基于深度学习的红外和可见光图像融合方法。然而,这些方法大多忽略了语义信息在图像融合中的重要性,导致生成的融合图像在人类视觉感知和高级视觉任务中表现不佳。为了解决这一问题,我们提出了一种语义先验知识驱动的红外和可见光图像融合方法。该方法利用预训练的语义分割模型获取红外和可见光图像的语义信息,并通过语义特征感知模块和语义特征嵌入模块驱动红外和可见光图像的融合过程。同时,我们将融合图像划分为各个类别块,并将其作为组件,利用区域语义对抗损失增强不同区域的对抗网络生成能力,从而提高融合图像的质量。通过在广泛使用的数据集上进行的大量实验,结果表明我们的方法在人眼可视化和高级视觉任务方面都优于当前领先的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信