A Bayesian spatial measurement error approach to incorporate heterogeneous population-at-risk uncertainty in estimating small-area opioid mortality rates

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Emily N. Peterson , Rachel C. Nethery , Jarvis T. Chen , Loni P. Tabb , Brent A. Coull , Frederic B. Piel , Lance A. Waller
{"title":"A Bayesian spatial measurement error approach to incorporate heterogeneous population-at-risk uncertainty in estimating small-area opioid mortality rates","authors":"Emily N. Peterson ,&nbsp;Rachel C. Nethery ,&nbsp;Jarvis T. Chen ,&nbsp;Loni P. Tabb ,&nbsp;Brent A. Coull ,&nbsp;Frederic B. Piel ,&nbsp;Lance A. Waller","doi":"10.1016/j.sste.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring small-area geographical population trends in opioid mortality has significant implications for informing preventative resource allocation. A common approach to estimating small-area opioid mortality uses a standard disease mapping method where population-at-risk estimates (denominators) are treated as fixed. This assumption ignores the uncertainty in small-area population estimates, potentially biasing risk estimates and underestimating their uncertainties. We compare a Bayesian Spatial Berkson Error model and a Bayesian Spatial Classical Error model to a naive approach that treats denominators as fixed. Using simulations, we illustrate potential bias from ignored population-at-risk uncertainty. We apply these methods to obtain 2020 opioid mortality risk estimates for 159 counties in Georgia. Assessing differences in bias and uncertainty across approaches can improve the accuracy of small-area opioid risk estimates, guiding public health interventions, policies, and resource allocation.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"53 ","pages":"Article 100719"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring small-area geographical population trends in opioid mortality has significant implications for informing preventative resource allocation. A common approach to estimating small-area opioid mortality uses a standard disease mapping method where population-at-risk estimates (denominators) are treated as fixed. This assumption ignores the uncertainty in small-area population estimates, potentially biasing risk estimates and underestimating their uncertainties. We compare a Bayesian Spatial Berkson Error model and a Bayesian Spatial Classical Error model to a naive approach that treats denominators as fixed. Using simulations, we illustrate potential bias from ignored population-at-risk uncertainty. We apply these methods to obtain 2020 opioid mortality risk estimates for 159 counties in Georgia. Assessing differences in bias and uncertainty across approaches can improve the accuracy of small-area opioid risk estimates, guiding public health interventions, policies, and resource allocation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信